Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Resilience and Mental-Health Symptoms in ICU Healthcare Professionals Facing Repeated COVID-19 Waves
Handling distribution shifts from training data, known as out-of-distribution (OOD) generalization, poses a significant challenge in the fie… (voir plus)ld of machine learning. While a pre-trained vision-language model like CLIP has demonstrated remarkable zero-shot performance, further adaptation of the model to downstream tasks leads to undesirable degradation for OOD data. In this work, we introduce Sparse Adaptation for Fine-Tuning (SAFT), a method that prevents fine-tuning from forgetting the general knowledge in the pre-trained model. SAFT only updates a small subset of important parameters whose gradient magnitude is large, while keeping the other parameters frozen. SAFT is straightforward to implement and conceptually simple. Extensive experiments show that with only 0.1% of the model parameters, SAFT can significantly improve the performance of CLIP. It consistently outperforms baseline methods across several benchmarks. On the few-shot learning benchmark of ImageNet and its variants, SAFT gives a gain of 5.15% on average over the conventional fine-tuning method in OOD settings.
Recent work has proposed a power law relationship, referred to as ``scaling laws,'' between the performance of artificial intelligence (AI) … (voir plus)models and aspects of those models' design (e.g., dataset size). In other words, as the size of a dataset (or model parameters, etc) increases, the performance of a given model trained on that dataset will correspondingly increase. However, while compelling in the aggregate, this scaling law relationship overlooks the ways that metrics used to measure performance may be precarious and contested, or may not correspond with how different groups of people may perceive the quality of models' output. In this paper, we argue that as the size of datasets used to train large AI models grows, the number of distinct communities (including demographic groups) whose data is included in a given dataset is likely to grow, each of whom may have different values. As a result, there is an increased risk that communities represented in a dataset may have values or preferences not captured by (or in the worst case, at odds with) the metrics used to evaluate model performance for scaling laws. We end the paper with implications for AI scaling laws -- that models may not, in fact, continue to improve as the datasets get larger -- at least not for all people or communities impacted by those models.
Many deep neural network (DNN) models consume a significant amount of energy at inference time, in large part due to energy consumed by memo… (voir plus)ry access. In-memory computing addresses this problem by eliminating many memory accesses, but exposes model weights to noise and circuit variations. While several methods have been proposed to train DNNs robust to weight noise they typically require knowledge of the noise distribution, or degrade the DNN performance in noiseless setting. In this work, we first show that applying sharpness-aware training, by optimizing for both the loss value and loss sharpness, significantly improves robustness to noisy weights at inference time. Then, we propose a new adaptive sharpness-aware method that conditions the worst-case perturbation of a given weight not only on its magnitude but also on the range of the weight distribution. This is achieved by performing sharpness-aware minimization scaled by outlier normalization (SAMSON). Results on computer-vision benchmarks show that SAMSON increases model robustness to noisy weights without compromising generalization performance in noiseless regimes.
A key property of reasoning systems is the ability to make sharp decisions on their input data. For contemporary AI systems, a key carrier o… (voir plus)f sharp behaviour is the softmax function, with its capability to perform differentiable query-key lookups. It is a common belief that the predictive power of networks leveraging softmax arises from "circuits" which sharply perform certain kinds of computations consistently across many diverse inputs. However, for these circuits to be robust, they would need to generalise well to arbitrary valid inputs. In this paper, we dispel this myth: even for tasks as simple as finding the maximum key, any learned circuitry must disperse as the number of items grows at test time. We attribute this to a fundamental limitation of the softmax function to robustly approximate sharp functions, prove this phenomenon theoretically, and propose adaptive temperature as an ad-hoc technique for improving the sharpness of softmax at inference time.