Using In-Context Learning to Improve Dialogue Safety
Nicholas Meade
Spandana Gella
Devamanyu Hazarika
Prakhar Gupta
Di Jin
Yang Liu
Dilek Hakkani-Tur
Amortizing intractable inference in large language models
Edward J Hu
Moksh J. Jain
Eric Elmoznino
Younesse Kaddar
Nikolay Malkin
Autoregressive large language models (LLMs) compress knowledge from their training data through next-token conditional distributions. This l… (voir plus)imits tractable querying of this knowledge to start-to-end autoregressive sampling. However, many tasks of interest -- including sequence continuation, infilling, and other forms of constrained generation -- involve sampling from intractable posterior distributions. We address this limitation by using amortized Bayesian inference to sample from these intractable posteriors. Such amortization is algorithmically achieved by fine-tuning LLMs via diversity-seeking reinforcement learning algorithms: generative flow networks (GFlowNets). We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training and reward-maximizing policy optimization. As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem and demonstrate that our approach enables data-efficient adaptation of LLMs to tasks that require multi-step rationalization and tool use.
DragD3D: Vertex-based Editing for Realistic Mesh Deformations using 2D Diffusion Priors
Tianhao Xie
Sudhir Mudur
Tiberiu Popa
Direct mesh editing and deformation are key components in the geometric modeling and animation pipeline. Direct mesh editing methods are typ… (voir plus)ically framed as optimization problems combining user-specified vertex constraints with a regularizer that determines the position of the rest of the vertices. The choice of the regularizer is key to the realism and authenticity of the final result. Physics and geometry-based regularizers are not aware of the global context and semantics of the object, and the more recent deep learning priors are limited to a specific class of 3D object deformations. In this work, our main contribution is a local mesh editing method called DragD3D for global context-aware realistic deformation through direct manipulation of a few vertices. DragD3D is not restricted to any class of objects. It achieves this by combining the classic geometric ARAP (as rigid as possible) regularizer with 2D priors obtained from a large-scale diffusion model. Specifically, we render the objects from multiple viewpoints through a differentiable renderer and use the recently introduced DDS loss which scores the faithfulness of the rendered image to one from a diffusion model. DragD3D combines the approximate gradients of the DDS with gradients from the ARAP loss to modify the mesh vertices via neural Jacobian field, while also satisfying vertex constraints. We show that our deformations are realistic and aware of the global context of the objects, and provide better results than just using geometric regularizers.
Evolution of High Throughput Satellite Systems: Vision, Requirements, and Key Technologies
Olfa Ben Yahia
Zineb Garroussi
Olivier Bélanger
Brunilde Sansò
Jean-François Frigon
Stéphane Martel
Gunes Karabulut Kurt
High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G netw… (voir plus)orks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture.
Realizing XR Applications Using 5G-Based 3D Holographic Communication and Mobile Edge Computing
Dun Yuan
Ekram Hossain
Di Wu
3D holographic communication has the potential to revolutionize the way people interact with each other in virtual spaces, offering immersiv… (voir plus)e and realistic experiences. However, demands for high data rates, extremely low latency, and high computations to enable this technology pose a significant challenge. To address this challenge, we propose a novel job scheduling algorithm that leverages Mobile Edge Computing (MEC) servers in order to minimize the total latency in 3D holographic communication. One of the motivations for this work is to prevent the uncanny valley effect, which can occur when the latency hinders the seamless and real-time rendering of holographic content, leading to a less convincing and less engaging user experience. Our proposed algorithm dynamically allocates computation tasks to MEC servers, considering the network conditions, computational capabilities of the servers, and the requirements of the 3D holographic communication application. We conduct extensive experiments to evaluate the performance of our algorithm in terms of latency reduction, and the results demonstrate that our approach significantly outperforms other baseline methods. Furthermore, we present a practical scenario involving Augmented Reality (AR), which not only illustrates the applicability of our algorithm but also highlights the importance of minimizing latency in achieving high-quality holographic views. By efficiently distributing the computation workload among MEC servers and reducing the overall latency, our proposed algorithm enhances the user experience in 3D holographic communications and paves the way for the widespread adoption of this technology in various applications, such as telemedicine, remote collaboration, and entertainment.
Causal Inference in Gene Regulatory Networks with GFlowNet: Towards Scalability in Large Systems
Trang Nguyen
Alexander Tong
Kanika Madan
Dianbo Liu
Understanding causal relationships within Gene Regulatory Networks (GRNs) is essential for unraveling the gene interactions in cellular proc… (voir plus)esses. However, causal discovery in GRNs is a challenging problem for multiple reasons including the existence of cyclic feedback loops and uncertainty that yields diverse possible causal structures. Previous works in this area either ignore cyclic dynamics (assume acyclic structure) or struggle with scalability. We introduce Swift-DynGFN as a novel framework that enhances causal structure learning in GRNs while addressing scalability concerns. Specifically, Swift-DynGFN exploits gene-wise independence to boost parallelization and to lower computational cost. Experiments on real single-cell RNA velocity and synthetic GRN datasets showcase the advancement in learning causal structure in GRNs and scalability in larger systems.
Causal Inference in Gene Regulatory Networks with GFlowNet: Towards Scalability in Large Systems
Trang Nguyen
Alexander Tong
Kanika Madan
Dianbo Liu
Understanding causal relationships within Gene Regulatory Networks (GRNs) is essential for unraveling the gene interactions in cellular proc… (voir plus)esses. However, causal discovery in GRNs is a challenging problem for multiple reasons including the existence of cyclic feedback loops and uncertainty that yields diverse possible causal structures. Previous works in this area either ignore cyclic dynamics (assume acyclic structure) or struggle with scalability. We introduce Swift-DynGFN as a novel framework that enhances causal structure learning in GRNs while addressing scalability concerns. Specifically, Swift-DynGFN exploits gene-wise independence to boost parallelization and to lower computational cost. Experiments on real single-cell RNA velocity and synthetic GRN datasets showcase the advancement in learning causal structure in GRNs and scalability in larger systems.
Improved baselines for vision-language pre-training
Enrico Fini
Pietro Astolfi
Jakob Verbeek
Michal Drozdzal
« L’étude de la synchronisation intercérébrale renouvelle le regard sur nos cerveaux »
François Lassagne
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky T. Q. Chen
Cheng-Hao Liu
We tackle the problem of sampling from intractable high-dimensional density functions, a fundamental task that often appears in machine lear… (voir plus)ning and statistics. We extend recent sampling-based approaches that leverage controlled stochastic processes to model approximate samples from these target densities. The main drawback of these approaches is that the training objective requires full trajectories to compute, resulting in sluggish credit assignment issues due to use of entire trajectories and a learning signal present only at the terminal time. In this work, we present Diffusion Generative Flow Samplers (DGFS), a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments, via parameterizing an additional"flow function". Our method takes inspiration from the theory developed for generative flow networks (GFlowNets), allowing us to make use of intermediate learning signals. Through various challenging experiments, we demonstrate that DGFS achieves more accurate estimates of the normalization constant than closely-related prior methods.
Local Search GFlowNets
Minsu Kim
Taeyoung Yun
Dinghuai Zhang
Sungsoo Ahn
Jinkyoo Park
Generative Flow Networks (GFlowNets) are amortized sampling methods that learn a distribution over discrete objects proportional to their re… (voir plus)wards. GFlowNets exhibit a remarkable ability to generate diverse samples, yet occasionally struggle to consistently produce samples with high rewards due to over-exploration on wide sample space. This paper proposes to train GFlowNets with local search, which focuses on exploiting high-rewarded sample space to resolve this issue. Our main idea is to explore the local neighborhood via backtracking and reconstruction guided by backward and forward policies, respectively. This allows biasing the samples toward high-reward solutions, which is not possible for a typical GFlowNet solution generation scheme, which uses the forward policy to generate the solution from scratch. Extensive experiments demonstrate a remarkable performance improvement in several biochemical tasks. Source code is available: https://github.com/dbsxodud-11/ls_gfn.
Local Search GFlowNets
Minsu Kim
Taeyoung Yun
Dinghuai Zhang
Sungsoo Ahn
Jinkyoo Park