Proving Linear Mode Connectivity of Neural Networks via Optimal Transport
Baptiste Goujaud
Aymeric Dieuleveut
The energy landscape of high-dimensional non-convex optimization problems is crucial to understanding the effectiveness of modern deep neura… (voir plus)l network architectures. Recent works have experimentally shown that two different solutions found after two runs of a stochastic training are often connected by very simple continuous paths (e.g., linear) modulo a permutation of the weights. In this paper, we provide a framework theoretically explaining this empirical observation. Based on convergence rates in Wasserstein distance of empirical measures, we show that, with high probability, two wide enough two-layer neural networks trained with stochastic gradient descent are linearly connected. Additionally, we express upper and lower bounds on the width of each layer of two deep neural networks with independent neuron weights to be linearly connected. Finally, we empirically demonstrate the validity of our approach by showing how the dimension of the support of the weight distribution of neurons, which dictates Wasserstein convergence rates is correlated with linear mode connectivity.
Quantifying learning-style adaptation in effectiveness of LLM teaching
Ruben Weijers
Gabrielle Fidelis de Castilho
This preliminary study aims to investigate whether AI, when prompted based on individual learning styles, can effectively improve comprehens… (voir plus)ion and learning experiences in educational settings. It involves tailoring LLMs baseline prompts and comparing the results of a control group receiving standard content and an experimental group receiving learning style-tailored content. Preliminary results suggest that GPT-4 can generate responses aligned with various learning styles, indicating the potential for enhanced engagement and comprehension. However, these results also reveal challenges, including the model’s tendency for sycophantic behavior and variability in responses. Our findings suggest that a more sophisticated prompt engineering approach is required for integrating AI into education (AIEd) to improve educational outcomes.
Reinforcement Learning for Blind Stair Climbing with Legged and Wheeled-Legged Robots
Simon Chamorro
Victor Klemm
Miguel de La Iglesia Valls
Roland Siegwart
Reinforcement Learning Informed Evolutionary Search for Autonomous Systems Testing
Dmytro Humeniuk
Giuliano Antoniol
Evolutionary search-based techniques are commonly used for testing autonomous robotic systems. However, these approaches often rely on compu… (voir plus)tationally expensive simulator-based models for test scenario evaluation. To improve the computational efficiency of the search-based testing, we propose augmenting the evolutionary search (ES) with a reinforcement learning (RL) agent trained using surrogate rewards derived from domain knowledge. In our approach, known as RIGAA (Reinforcement learning Informed Genetic Algorithm for Autonomous systems testing), we first train an RL agent to learn useful constraints of the problem and then use it to produce a certain part of the initial population of the search algorithm. By incorporating an RL agent into the search process, we aim to guide the algorithm towards promising regions of the search space from the start, enabling more efficient exploration of the solution space. We evaluate RIGAA on two case studies: maze generation for an autonomous ant robot and road topology generation for an autonomous vehicle lane keeping assist system. In both case studies, RIGAA converges faster to fitter solutions and produces a better test suite (in terms of average test scenario fitness and diversity). RIGAA also outperforms the state-of-the-art tools for vehicle lane keeping assist system testing, such as AmbieGen and Frenetic.
Reproducible Spinal Cord Quantitative MRI Analysis with the Spinal Cord Toolbox.
Resilience and Mental-Health Symptoms in ICU Healthcare Professionals Facing Repeated COVID-19 Waves
Elie Azoulay
Frédéric Pochard
Laurent Argaud
Alain Cariou
Raphael Clere-Jehl
Olivier Guisset
Vincent Labbé
Fabienne Tamion
Fabrice Bruneel
Mercé Jourdain
Danielle Reuter
Kada Klouche
Achille Kouatchet
Virginie Souppart
Alexandre Lautrette
Julien Bohé
Antoine Vieillard Baron
Jean Dellamonica
Laurent Papazian
Jean Reignier … (voir 3 de plus)
François Barbier
Nancy Kentish-Barnes
SAFT: Towards Out-of-Distribution Generalization in Fine-Tuning
Bac Nguyen
Stefan Uhlich
Fabien Cardinaux
Lukas Mauch
Marzieh Edraki
Handling distribution shifts from training data, known as out-of-distribution (OOD) generalization, poses a significant challenge in the fie… (voir plus)ld of machine learning. While a pre-trained vision-language model like CLIP has demonstrated remarkable zero-shot performance, further adaptation of the model to downstream tasks leads to undesirable degradation for OOD data. In this work, we introduce Sparse Adaptation for Fine-Tuning (SAFT), a method that prevents fine-tuning from forgetting the general knowledge in the pre-trained model. SAFT only updates a small subset of important parameters whose gradient magnitude is large, while keeping the other parameters frozen. SAFT is straightforward to implement and conceptually simple. Extensive experiments show that with only 0.1% of the model parameters, SAFT can significantly improve the performance of CLIP. It consistently outperforms baseline methods across several benchmarks. On the few-shot learning benchmark of ImageNet and its variants, SAFT gives a gain of 5.15% on average over the conventional fine-tuning method in OOD settings.
Scaling Laws Do Not Scale
Michael Madaio
Recent work has proposed a power law relationship, referred to as ``scaling laws,'' between the performance of artificial intelligence (AI) … (voir plus)models and aspects of those models' design (e.g., dataset size). In other words, as the size of a dataset (or model parameters, etc) increases, the performance of a given model trained on that dataset will correspondingly increase. However, while compelling in the aggregate, this scaling law relationship overlooks the ways that metrics used to measure performance may be precarious and contested, or may not correspond with how different groups of people may perceive the quality of models' output. In this paper, we argue that as the size of datasets used to train large AI models grows, the number of distinct communities (including demographic groups) whose data is included in a given dataset is likely to grow, each of whom may have different values. As a result, there is an increased risk that communities represented in a dataset may have values or preferences not captured by (or in the worst case, at odds with) the metrics used to evaluate model performance for scaling laws. We end the paper with implications for AI scaling laws -- that models may not, in fact, continue to improve as the datasets get larger -- at least not for all people or communities impacted by those models.
SCIsegV2: A Universal Tool for Segmentation of Intramedullary Lesions in Spinal Cord Injury
Enamundram Naga Karthik
Lynn Farner
Dario Pfyffer
Simon Schading-Sassenhausen
Anna Lebret
Gergely David
Andrew C. Smith
Kenneth A. Weber
Maryam Seif
Rhscir Network Imaging Group
Patrick Freund
Scope Ambiguities in Large Language Models
Sebastian Schuster
Sowmya Vajjala
Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Generation.
James Vuckovic
Kilian FATRAS
Eric Laufer
Riashat Islam
Cheng-Hao Liu
Michael M. Bronstein
Alexander Tong
Sharpness-Aware Minimization Scaled by Outlier Normalization for Robust DNNs on In-Memory Computing Accelerators
Sébastien Henwood
Goncalo Mordido
Yvon Savaria
François Leduc-Primeau
Many deep neural network (DNN) models consume a significant amount of energy at inference time, in large part due to energy consumed by memo… (voir plus)ry access. In-memory computing addresses this problem by eliminating many memory accesses, but exposes model weights to noise and circuit variations. While several methods have been proposed to train DNNs robust to weight noise they typically require knowledge of the noise distribution, or degrade the DNN performance in noiseless setting. In this work, we first show that applying sharpness-aware training, by optimizing for both the loss value and loss sharpness, significantly improves robustness to noisy weights at inference time. Then, we propose a new adaptive sharpness-aware method that conditions the worst-case perturbation of a given weight not only on its magnitude but also on the range of the weight distribution. This is achieved by performing sharpness-aware minimization scaled by outlier normalization (SAMSON). Results on computer-vision benchmarks show that SAMSON increases model robustness to noisy weights without compromising generalization performance in noiseless regimes.