Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Learning domain-invariant classifiers for infant cry sounds
Chaotic systems such as the gravitational N-body problem are ubiquitous in astronomy. Machine learning (ML) is increasingly deployed to pred… (voir plus)ict the evolution of such systems, e.g. with the goal of speeding up simulations. Strategies such as active Learning (AL) are a natural choice to optimize ML training. Here we showcase an AL failure when predicting the stability of the Sitnikov three-body problem, the simplest case of N-body problem displaying chaotic behavior. We link this failure to the fractal nature of our classification problem's decision boundary. This is a potential pitfall in optimizing large sets of N-body simulations via AL in the context of star cluster physics, galactic dynamics, or cosmology.
Motivation: Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success in Natural Language Processing a… (voir plus)nd Computer Vision domains. However, the development of PTMs on healthcare time-series data is lagging behind. This underscores the limitations of the existing transformer-based architectures, particularly their scalability to handle large-scale time series and ability to capture long-term temporal dependencies. Methods: In this study, we present Timely Generative Pre-trained Transformer (TimelyGPT). TimelyGPT employs an extrapolatable position (xPos) embedding to encode trend and periodic patterns into time-series representations. It also integrates recurrent attention and temporal convolution modules to effectively capture global-local temporal dependencies. Materials: We evaluated TimelyGPT on two large-scale healthcare time series datasets corresponding to continuous biosignals and irregularly-sampled time series, respectively: (1) the Sleep EDF dataset consisting of over 1.2 billion timesteps; (2) the longitudinal healthcare administrative database PopHR, comprising 489,000 patients randomly sampled from the Montreal population. Results: In forecasting continuous biosignals, TimelyGPT achieves accurate extrapolation up to 6,000 timesteps of body temperature during the sleep stage transition, given a short look-up window (i.e., prompt) containing only 2,000 timesteps. For irregularly-sampled time series, TimelyGPT with a proposed time-specific inference demonstrates high top recall scores in predicting future diagnoses using early diagnostic records, effectively handling irregular intervals between clinical records. Together, we envision TimelyGPT to be useful in various health domains, including long-term patient health state forecasting and patient risk trajectory prediction. Availability: The open-sourced code is available at Github.
Background:
Acute myeloid leukemia (AML) comprises diverse genomic subgroups and remains hard to treat in most patients. Despite breakthrou… (voir plus)ghs in the therapeutic arsenal in recent years, clinical usage of therapeutic antibodies or chimeric antigen receptor T (CAR-T) cells has been lagging in contrast to other hematological malignancies. In fact, CD33 represents the only antibody-based strategy approved for this disease to date, highlighting the need to identify new promising targets. AML cells span a wide range of aberrant myeloid differentiation programs, complexifying the identification, by bulk genomics, of targets expressed in the most immature leukemic cells.
Aims and Methods:
To identify the expression landscape of surface proteins in immature leukemic cells, we performed single-cell RNA sequencing (scRNA-seq, 10x 3' Reagent Kits) of primary human AML cells from 20 specimens of the Leucegene cohort enriched in intermediate and adverse genetic backgrounds ( KMT2A-rearranged n=5, chromosome 5 and/or 7 deletions (abn5/7, n=5) complex karyotype (n=4), NPM1/DNMT3A/FLT3-ITD triple-mutant (n=3) and others (n=3)). A Random Forest classifier was developed to unbiasedly classify AML cells into distinct differentiation stages using normal bone marrow-derived scRNA-seq data from the Human Cell Atlas (HCA) consortium. Genes were scored based on their probability of coding for proteins expressed at the cell surface using the SPAT algorithm developed by our group (https://doi.org/10.1101/2023.07.07.547075), retaining high score ones. To validate surface expression, we concomitantly analyzed the surface proteome (hereafter named surfaceome) of 100 primary human AML samples from the Leucegene cohort, including all 20 samples profiled by scRNA-seq.
Results:
After quality control, we profiled and characterized 103 690 high quality cells (mean of 5185 cells/sample). We trained a Random Forest classifier to annotate cells in a two step process, first identifying plasma cells based on a restricted list of genes abundantly expressed in these cells and subsequently assigning the remaining cells to one of 33 cell types. We performed a five-fold cross validation of the model and subsequently determined the accuracy of our classifier to be 92% on the test subset of the HCA data. Applied to our AML cell collection, a total of 35 053 cells (34%) were unbiasedly classified as Hematopoietic Stem Cell (HSC)-like, corresponding to the most phenotypically immature leukemic cells in each patient sample (ranging from 4 to 74 %). Accordingly, HSC-like AML cells preferentially express genes associated with normal HSCs, such as CD34, FAM30A, and SPINK2, and globally lack expression of mature lineages defining genes, further validating our classifier. The proportion of HSC-like cells varied among AML subgroups, and was lowest in KMT2A-r AML (median 19%) and highest in abn5/7 samples (46%). Integration of our AML atlas using Harmony algorithm preserved differentiation hierarchies across samples, with most cell types, including HSC-like cells, occupying a defined area in the low dimensional embedding.
To identify new surface antigens specifically expressed in immature leukemic cells, we compared the high (≥8) SPAT score gene expression profile of AML HSC-like cells with that of normal HSC cells (HCA), and identified 60 genes significantly overexpressed in AML immature cells. Of those, 39 genes were also detected at the protein level by the surfaceome analysis, supporting their predicted expression at the cell surface in AML samples. 59% of these 39 genes (n=23) were detected in over 80% of the specimens analyzed by the surfaceome, and thus are nearly universally expressed in our AML cohort. To identify targets of therapies that could be repurposed, we next evaluated the relevance of our findings by querying the Thera-SAbDab database. Most interestingly, 8 of the 39 AML specific HSC markers are targeted by therapeutic antibodies FDA-approved or in clinical trials for the treatment of AML (n=4, IL3RA, FLT3, CD37 and TNFRSF10B) or other indications (n = 4).
Conclusion
Our genetically diverse AML single-cell atlas, supported by mass spectrometry, enables the identification of both subset-specific and pan-AML surface protein genes. These represent potential targets for antibody based strategy development or therapy repurposing in AML.