Offert en partenariat avec Indspire, ce parcours professionnel sur mesure est conçu pour permettre aux talents autochtones d'apprendre, de développer et de diriger l'évolution de l'IA. Les candidatures pour le programme 2025 sont ouvertes jusqu'au 31 janvier.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Automated Traceability for Domain Modelling Decisions Empowered by Artificial Intelligence
Domain modelling abstracts real-world entities and their relationships in the form of class diagrams for a given domain problem space. Model… (voir plus)lers often perform domain modelling to reduce the gap between understanding the problem description which expresses requirements in natural language and the concise interpretation of these requirements. However, the manual practice of domain modelling is both time-consuming and error-prone. These issues are further aggravated when problem descriptions are long, which makes it hard to trace modelling decisions from domain models to problem descriptions or vice-versa leading to completeness and conciseness issues. Automated support for tracing domain modelling decisions in both directions is thus advantageous. In this paper, we propose an automated approach that uses artificial intelligence techniques to extract domain models along with their trace links. We present a traceability information model to enable traceability of modelling decisions in both directions and provide its proof-of-concept in the form of a tool. The evaluation on a set of unseen problem descriptions shows that our approach is promising with an overall median F2 score of 82.04%. We conduct an exploratory user study to assess the benefits and limitations of our approach and present the lessons learned from this study.
2021-09-01
IEEE International Requirements Engineering Conference (publié)
In the initial phases of the software development cycle, domain modelling is typically performed to transform informal requirements expresse… (voir plus)d in natural language into concise and analyzable domain models. These models capture the key concepts of an application domain and their relationships in the form of class diagrams. Building domain models manually is often a time-consuming and labor-intensive task. The current approaches which aim to extract domain models automatically, are inadequate in providing insights into the modelling decisions taken by extractor systems. This inhibits modellers to quickly confirm the completeness and conciseness of extracted domain models. To address these challenges, we present DoMoBOT, a domain modelling bot that uses a traceability knowledge graph to enable traceability of modelling decisions from extracted domain model elements to requirements and vice-versa. In this tool demo paper, we showcase how the implementation and architecture of DoMoBOT facilitate modellers to extract domain models and gain insights into the modelling decisions taken by our bot.
2021-09-01
IEEE International Requirements Engineering Conference (publié)
Information diffusion prediction is an important task, which studies how information items spread among users. With the success of deep lear… (voir plus)ning techniques, recurrent neural networks (RNNs) have shown their powerful capability in modeling information diffusion as sequential data. However, previous works focused on either microscopic diffusion prediction, which aims at guessing who will be the next influenced user at what time, or macroscopic diffusion prediction, which estimates the total numbers of influenced users during the diffusion process. To the best of our knowledge, few attempts have been made to suggest a unified model for both microscopic and macroscopic scales. In this article, we propose a novel full-scale diffusion prediction model based on reinforcement learning (RL). RL incorporates the macroscopic diffusion size information into the RNN-based microscopic diffusion model by addressing the nondifferentiable problem. We also employ an effective structural context extraction strategy to utilize the underlying social graph information. Experimental results show that our proposed model outperforms state-of-the-art baseline models on both microscopic and macroscopic diffusion predictions on three real-world datasets.
2021-09-01
IEEE Transactions on Neural Networks and Learning Systems (publié)
Information diffusion prediction is an important task, which studies how information items spread among users. With the success of deep lear… (voir plus)ning techniques, recurrent neural networks (RNNs) have shown their powerful capability in modeling information diffusion as sequential data. However, previous works focused on either microscopic diffusion prediction, which aims at guessing who will be the next influenced user at what time, or macroscopic diffusion prediction, which estimates the total numbers of influenced users during the diffusion process. To the best of our knowledge, few attempts have been made to suggest a unified model for both microscopic and macroscopic scales. In this article, we propose a novel full-scale diffusion prediction model based on reinforcement learning (RL). RL incorporates the macroscopic diffusion size information into the RNN-based microscopic diffusion model by addressing the nondifferentiable problem. We also employ an effective structural context extraction strategy to utilize the underlying social graph information. Experimental results show that our proposed model outperforms state-of-the-art baseline models on both microscopic and macroscopic diffusion predictions on three real-world datasets.
2021-09-01
IEEE Transactions on Neural Networks and Learning Systems (published)
Promoting and Optimizing the Use of 3D-Printed Objects in Spontaneous Recognition Memory Tasks in Rodents: A Method for Improving Rigor and Reproducibility
A novel permuted fast successive-cancellation list decoding algorithm with fast Hadamard transform (FHT-FSCL) is presented. The proposed dec… (voir plus)oder initializes
Segmentation of enhancing tumours or lesions from MRI is important for detecting new disease activity in many clinical contexts. However, ac… (voir plus)curate segmentation requires the inclusion of medical images (e.g., T1 post-contrast MRI) acquired after injecting patients with a contrast agent (e.g., Gadolinium), a process no longer thought to be safe. Although a number of modality-agnostic segmentation networks have been developed over the past few years, they have been met with limited success in the context of enhancing pathology segmentation. In this work, we present HAD-Net, a novel offline adversarial knowledge distillation (KD) technique, whereby a pre-trained teacher segmentation network, with access to all MRI sequences, teaches a student network, via hierarchical adversarial training, to better overcome the large domain shift presented when crucial images are absent during inference. In particular, we apply HAD-Net to the challenging task of enhancing tumour segmentation when access to post-contrast imaging is not available. The proposed network is trained and tested on the BraTS 2019 brain tumour segmentation challenge dataset, where it achieves performance improvements in the ranges of 16% - 26% over (a) recent modality-agnostic segmentation methods (U-HeMIS, U-HVED), (b) KD-Net adapted to this problem, (c) the pre-trained student network and (d) a non-hierarchical version of the network (AD-Net), in terms of Dice scores for enhancing tumour (ET). The network also shows improvements in tumour core (TC) Dice scores. Finally, the network outperforms both the baseline student network and AD-Net in terms of uncertainty quantification for enhancing tumour segmentation based on the BraTS 2019 uncertainty challenge metrics. Our code is publicly available at: https://github.com/SaverioVad/HAD_Net
2021-08-25
Proceedings of the Fourth Conference on Medical Imaging with Deep Learning (publié)
Generating community measures of food purchasing activities using store-level electronic grocery transaction records: an ecological study in Montreal, Canada