Publications

An Attentive Approach for Building Partial Reasoning Agents from Pixels
Safa Alver
We study the problem of building reasoning agents that are able to generalize in an effective manner. Towards this goal, we propose an end-t… (voir plus)o-end approach for building model-based reinforcement learning agents that dynamically focus their reasoning to the relevant aspects of the environment: after automatically identifying the distinct aspects of the environment, these agents dynamically filter out the relevant ones and then pass them to their simulator to perform partial reasoning. Unlike existing approaches, our approach works with pixel-based inputs and it allows for interpreting the focal points of the agent. Our quantitative analyses show that the proposed approach allows for effective generalization in high-dimensional domains with raw observational inputs. We also perform ablation analyses to validate our design choices. Finally, we demonstrate through qualitative analyses that our approach actually allows for building agents that focus their reasoning on the relevant aspects of the environment.
Deep Learning in Ultrasound Localization Microscopy: Applications and Perspectives.
Brice Rauby
Paul Xing
Jean Provost
Ultrasound Localization Microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with … (voir plus)resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature of different tissues. Various deep-learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubbles distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.
An Empirical Study of Sensitive Information in Logs
Roozbeh Aghili
Heng Li
Rethinking Teacher-Student Curriculum Learning through the Cooperative Mechanics of Experience
Manfred Diaz
Andrea Tacchetti
Teacher-Student Curriculum Learning (TSCL) is a curriculum learning framework that draws inspiration from human cultural transmission and le… (voir plus)arning. It involves a teacher algorithm shaping the learning process of a learner algorithm by exposing it to controlled experiences. Despite its success, understanding the conditions under which TSCL is effective remains challenging. In this paper, we propose a data-centric perspective to analyze the underlying mechanics of the teacher-student interactions in TSCL. We leverage cooperative game theory to describe how the composition of the set of experiences presented by the teacher to the learner, as well as their order, influences the performance of the curriculum that is found by TSCL approaches. To do so, we demonstrate that for every TSCL problem, there exists an equivalent cooperative game, and several key components of the TSCL framework can be reinterpreted using game-theoretic principles. Through experiments covering supervised learning, reinforcement learning, and classical games, we estimate the cooperative values of experiences and use value-proportional curriculum mechanisms to construct curricula, even in cases where TSCL struggles. The framework and experimental setup we present in this work represent a novel foundation for a deeper exploration of TSCL, shedding light on its underlying mechanisms and providing insights into its broader applicability in machine learning.
Deconvolving X-ray Galaxy Cluster Spectra Using a Recurrent Inference Machine
C. Rhea
Julie Hlavacek-larrondo
Alexandre Adam
Ralph P. Kraft
Ákos Bogdán
Marine Prunier
Recent advances in machine learning algorithms have unlocked new insights in observational astronomy by allowing astronomers to probe new fr… (voir plus)ontiers. In this article, we present a methodology to disentangle the intrinsic X-ray spectrum of galaxy clusters from the instrumental response function. Employing state-of-the-art modeling software and data mining techniques of the Chandra data archive, we construct a set of 100,000 mock Chandra spectra. We train a recurrent inference machine (RIM) to take in the instrumental response and mock observation and output the intrinsic X-ray spectrum. The RIM can recover the mock intrinsic spectrum below the 1-
Swarming Out of the Lab: Comparing Relative Localization Methods for Collective Behavior
Rafael Gomes Braga
Vivek Shankar Vardharajan
David St-Onge
When Machines Outshine Humans in Object Recognition, Benchmarking Dilemma
Mohammad Javad Darvishi Bayazi
Md Rifat Arefin
Jocelyn Faubert
A high-throughput phenotypic screen combined with an ultra-large-scale deep learning-based virtual screening reveals novel scaffolds of antibacterial compounds
Gabriele Scalia
Steven T. Rutherford
Ziqing Lu
Kerry R. Buchholz
Nicholas Skelton
Kangway Chuang
Nathaniel Diamant
Jan-Christian Hütter
Jerome-Maxim Luescher
Anh Miu
Jeff Blaney
Leo Gendelev
Elizabeth Skippington
Greg Zynda
Nia Dickson
Michał Koziarski
Aviv Regev
Man-Wah Tan
Tommaso Biancalani
Burst firing optimizes invariant coding of natural communication signals by electrosensory neural populations
Michael G. Metzen
Amin Akhshi
Anmar Khadra
Maurice J. Chacron
LMAC-TD: Producing Time Domain Explanations for Audio Classifiers
Eleonora Mancini
Francesco Paissan
Trimming the Risk: Towards Reliable Continuous Training for Deep Learning Inspection Systems
Altaf Allah Abbassi
Houssem Ben Braiek
Thomas Reid
End-to-end Conditional Robust Optimization
Abhilash Reddy Chenreddy