Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
CKGConv: General Graph Convolution with Continuous Kernels
The existing definitions of graph convolution, either from spatial or spectral perspectives, are inflexible and not unified. Defining a gene… (voir plus)ral convolution operator in the graph domain is challenging due to the lack of canonical coordinates, the presence of irregular structures, and the properties of graph symmetries. In this work, we propose a novel graph convolution framework by parameterizing the kernels as continuous functions of pseudo-coordinates derived via graph positional encoding. We name this Continuous Kernel Graph Convolution (CKGConv). Theoretically, we demonstrate that CKGConv is flexible and expressive. CKGConv encompasses many existing graph convolutions, and exhibits the same expressiveness as graph transformers in terms of distinguishing non-isomorphic graphs. Empirically, we show that CKGConv-based Networks outperform existing graph convolutional networks and perform comparably to the best graph transformers across a variety of graph datasets.
This paper contributes a new approach for distributional reinforcement learning which elucidates
a clean separation of transition structure … (voir plus)and reward in the learning process. Analogous to how
the successor representation (SR) describes the expected consequences of behaving according to a
given policy, our distributional successor measure
(SM) describes the distributional consequences of
this behaviour. We formulate the distributional
SM as a distribution over distributions and provide theory connecting it with distributional and
model-based reinforcement learning. Moreover,
we propose an algorithm that learns the distributional SM from data by minimizing a two-level
maximum mean discrepancy. Key to our method
are a number of algorithmic techniques that are
independently valuable for learning generative
models of state. As an illustration of the usefulness of the distributional SM, we show that it
enables zero-shot risk-sensitive policy evaluation
in a way that was not previously possible.
Establishing an accurate model of dynamic systems poses a challenge for complex industrial processes. Due to the ability to handle complex t… (voir plus)asks, modular neural networks (MNN) have been widely applied to industrial process modeling. However, the phenomenon of domain drift caused by operating conditions may lead to a cold start of the model, which affects the performance of MNN. For this reason, a multisource transfer learning-based MNN (MSTL-MNN) is proposed in this study. First, the knowledge-driven transfer learning process is performed with domain similarity evaluation, knowledge extraction, and fusion, aiming to form an initial subnetwork in the target domain. Then, the positive transfer process of effective knowledge can avoid the cold start problem of MNN. Second, during the data-driven fine-tuning process, a regularized self-organizing long short-term memory algorithm is designed to fine-tune the structure and parameters of the initial subnetwork, which can improve the prediction performance of MNN. Meanwhile, relevant theoretical analysis is given to ensure the feasibility of MSTL-MNN. Finally, the effectiveness of the proposed method is confirmed by two benchmark simulations and a real industrial dataset of a municipal solid waste incineration process. Experimental results demonstrate the merits of MSTL-MNN for industrial applications.
2024-05-01
IEEE Transactions on Industrial Informatics (publié)