Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers
State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive. This has sparked a re… (voir plus)search agenda to reduce these models' parameter counts and computational costs without significantly impacting their performance. Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFNs), which are less studied than attention blocks. We consider three structured linear parameterizations of the FFN using efficient low-rank and block-diagonal matrices. In contrast to many previous works that examined these approximations, our study i) explores these structures from a training-from-scratch perspective, ii) scales up to 1.3B parameters, and iii) is conducted within recent Transformer-based LLMs rather than convolutional architectures. We demonstrate that these structures can lead to actual computational gains in various scenarios, including online decoding when using a pre-merge technique. Additionally, we propose a novel training regime, called \textit{self-guided training}, aimed at improving the poor training dynamics that these approximations exhibit when used from initialization. Interestingly, the scaling performance of structured matrices is explored, revealing steeper curves in scaling training FLOPs, along with a favorable scaling trend in the overtraining regime. Specifically, we show that wide and structured networks can utilize training FLOPs more efficiently, with fewer parameters and lower loss than dense models at their optimal trade-off. Our code is available at https://github.com/CLAIRE-Labo/StructuredFFN/tree/main.
Understanding the mechanisms behind decisions taken by large foundation models in sequential tasks is critical to ensuring that such systems… (voir plus) operate transparently and safely. However, interpretability methods have not yet been applied extensively to large-scale agents based on reinforcement learning. In this work, we perform exploratory analysis on the Video PreTraining (VPT) Minecraft playing agent, one of the largest open-source vision-based agents. We try to illuminate its reasoning mechanisms by applying various interpretability techniques. First, we analyze the attention mechanism while the agent solves its training task --- crafting a diamond pickaxe. The agent seems to pay attention to the 4 last frames and several key-frames further back. This provides clues as to how it maintains coherence in the task that takes 3-10 minutes, despite the agent's short memory span of only six seconds. Second, we perform various interventions, which help us uncover a worrying case of goal misgeneralization: VPT mistakenly identifies a villager wearing brown clothes as a tree trunk and punches it to death, when positioned stationary under green tree leaves. We demonstrate similar misbehavior in a related agent (STEVE-1), which motivates the use of VPT as a model organism for large-scale vision-based agent interpretability.
Methods for machine unlearning in large language models seek to remove undesirable knowledge or capabilities without compromising general la… (voir plus)nguage modeling performance.
This work investigates the use of mechanistic interpretability to improve the precision and effectiveness of unlearning.
We demonstrate that localizing unlearning to components with particular mechanisms in factual recall leads to more robust unlearning across different input/output formats, relearning, and latent knowledge, and reduces unintended side effects compared to nonlocalized unlearning.
Additionally, we analyze the strengths and weaknesses of different automated (rather than manual) interpretability methods for guiding unlearning, finding that their corresponding unlearned models require smaller edit sizes to achieve unlearning but are much less robust.
Methods for machine unlearning in large language models seek to remove undesirable knowledge or capabilities without compromising general la… (voir plus)nguage modeling performance.
This work investigates the use of mechanistic interpretability to improve the precision and effectiveness of unlearning.
We demonstrate that localizing unlearning to components with particular mechanisms in factual recall leads to more robust unlearning across different input/output formats, relearning, and latent knowledge, and reduces unintended side effects compared to nonlocalized unlearning.
Additionally, we analyze the strengths and weaknesses of different automated (rather than manual) interpretability methods for guiding unlearning, finding that their corresponding unlearned models require smaller edit sizes to achieve unlearning but are much less robust.
Automated sensors have potential to standardize and expand the monitoring of insects across the globe. As one of the most scalable and faste… (voir plus)st developing sensor technologies, we describe a framework for automated, image-based monitoring of nocturnal insects—from sensor development and field deployment to workflows for data processing and publishing. Sensors comprise a light to attract insects, a camera for collecting images and a computer for scheduling, data storage and processing. Metadata is important to describe sampling schedules that balance the capture of relevant ecological information against power and data storage limitations. Large data volumes of images from automated systems necessitate scalable and effective data processing. We describe computer vision approaches for the detection, tracking and classification of insects, including models built from existing aggregations of labelled insect images. Data from automated camera systems necessitate approaches that account for inherent biases. We advocate models that explicitly correct for bias in species occurrence or abundance estimates resulting from the imperfect detection of species or individuals present during sampling occasions. We propose ten priorities towards a step-change in automated monitoring of nocturnal insects, a vital task in the face of rapid biodiversity loss from global threats. This article is part of the theme issue ‘Towards a toolkit for global insect biodiversity monitoring’.
2024-06-24
Philosophical Transactions of the Royal Society B: Biological Sciences (publié)
Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectiv… (voir plus)es can be non-differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box objectives in molecular discovery, traverse chemical space by performing random mutations and crossovers, leading to a large number of expensive objective evaluations. In this work, we ameliorate this shortcoming by incorporating chemistry-aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover and mutation operations in EAs using LLMs trained on large corpora of chemical information. We perform extensive empirical studies on both commercial and open-source models on multiple tasks involving property optimization, molecular rediscovery, and structure-based drug design, demonstrating that the joint usage of LLMs with EAs yields superior performance over all baseline models across single- and multi-objective settings. We demonstrate that our algorithm improves both the quality of the final solution and convergence speed, thereby reducing the number of required objective evaluations. Our code is available at http://github.com/zoom-wang112358/MOLLEO
Existing Digital Health Technology Index Summary Report for Older Adults Living with Neurocognitive Disorders (Mild and Major) and Their Informal Caregivers: An Environmental Scan
Digital health has added numerous promising solutions to enhance the health and wellness of people with neurocognitive disorders (NCDs) and … (voir plus)their informal caregivers. (1) Background: It is important to obtain a comprehensive view of currently available technologies, their outcomes, and conditions of success to inform recommendations regarding digital health solutions for people with NCDs and their caregivers. This environmental scan was performed to identify the features of existing digital health solutions relevant to the targeted population. This work reviews currently available digital health solutions and their related characteristics to develop a decision support tool for older adults living with mild or major neurocognitive disorders and their informal caregivers. This knowledge will aid the development of a decision support tool to assist older adults and their informal caregivers in their search for adequate digital health solutions according to their needs and preferences based on trustable information. (2) Methods: We conducted an environmental scan to identify digital health solutions from a systematic review and targeted searches in the grey literature covering the regions of Canada and Europe. Technological tools were scanned based on a preformatted extraction grid. We assessed their relevance based on selected attributes and summarized the findings. (3) Results: We identified 100 available digital health solutions. The majority (56%) were not specific to NCDs. Only 28% provided scientific evidence of their effectiveness. Remote patient care, movement tracking, and cognitive exercises were the most common purposes of digital health solutions. Most solutions were presented as decision aid tools, pill dispensers, apps, web, or a combination of these platforms. (4) Conclusions: This environmental scan allowed for identifying current digital health solutions for older adults with mild or major neurocognitive disorders and their informal caregivers. Findings from the environmental scan highlight the need for additional approaches to strengthen digital health interventions for the well-being of older adults with mild and major NCDs and their informal and formal healthcare providers.
Discrete audio tokens have recently gained considerable attention for their potential to connect audio and language processing, enabling the… (voir plus) creation of modern multimodal large language models. Ideal audio tokens must effectively preserve phonetic and semantic content along with paralinguistic information, speaker identity, and other details. While several types of audio tokens have been recently proposed, identifying the optimal tokenizer for various tasks is challenging due to the inconsistent evaluation settings in existing studies. To address this gap, we release the Discrete Audio and Speech Benchmark (DASB), a comprehensive leaderboard for benchmarking discrete audio tokens across a wide range of discriminative tasks, including speech recognition, speaker identification and verification, emotion recognition, keyword spotting, and intent classification, as well as generative tasks such as speech enhancement, separation, and text-to-speech. Our results show that, on average, semantic tokens outperform compression tokens across most discriminative and generative tasks. However, the performance gap between semantic tokens and standard continuous representations remains substantial, highlighting the need for further research in this field.
Large Language Models (LLMs) have demonstrated superior performance in language understanding benchmarks. A recent use case for LLMs involve… (voir plus)s training decision-making agents over textual information. The existing approach leverages LLM's linguistic priors for action candidate recommendations in text games, i.e., to operate without environment-provided actions. However, adapting LLMs to specific games/tasks requires a massive amount of annotated human gameplay. Moreover, in the existing approach, the language model was kept frozen during an agent's training process, which limits learning from in-game knowledge about the world. Hence, we explore strategies to adapt the language model for candidate recommendation with in-game transition in an online learning fashion to mitigate reliance on human-annotated gameplays, which are costly to acquire. In this paper, we propose in-game transition selection methods to adapt the LLM in the loop, reducing the dependency on using human-annotated gameplays while improving performance and convergence. Our method demonstrates a 53% relative improvement in average game score over the previous state-of-the-art model, achieving more than twice the convergence rate in a full-annotated dataset setting. Furthermore, even with only 10% of human annotation, we surpassed the 100\% state-of-the-art performance benchmark.
Large Language Models (LLMs) have become increasingly capable of handling diverse tasks with the aid of well-crafted prompts and integration… (voir plus) of external tools, but as task complexity rises, the workflow involving LLMs can be complicated and thus challenging to implement and maintain. To address this challenge, we propose APPL, A Prompt Programming Language that acts as a bridge between computer programs and LLMs, allowing seamless embedding of prompts into Python functions, and vice versa. APPL provides an intuitive and Python-native syntax, an efficient parallelized runtime with asynchronous semantics, and a tracing module supporting effective failure diagnosis and replaying without extra costs. We demonstrate that APPL programs are intuitive, concise, and efficient through three representative scenarios: Chain-of-Thought with self-consistency (CoT-SC), ReAct tool use agent, and multi-agent chat. Experiments on three parallelizable workflows further show that APPL can effectively parallelize independent LLM calls, with a significant speedup ratio that almost matches the estimation.
We apply functional acceleration to the Policy Mirror Descent (PMD) general family of algorithms, which cover a wide range of novel and fund… (voir plus)amental methods in Reinforcement Learning (RL). Leveraging duality, we propose a momentum-based PMD update. By taking the functional route, our approach is independent of the policy parametrization and applicable to large-scale optimization, covering previous applications of momentum at the level of policy parameters as a special case. We theoretically analyze several properties of this approach and complement with a numerical ablation study, which serves to illustrate the policy optimization dynamics on the value polytope, relative to different algorithmic design choices in this space. We further characterize numerically several features of the problem setting relevant for functional acceleration, and lastly, we investigate the impact of approximation on their learning mechanics.