Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (voir 22 de plus)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Alan Chan
Markus Anderljung
Lilian Edwards
Aleksandar Petrov
Christian Schroeder de Witt
Danqi Chen
Samuel Albanie
Sumeet Ramesh Motwani
Jakob Nicolaus Foerster
Philip Torr
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
Online Convex Optimization for On-Board Routing in High-Throughput Satellites
Olivier B'elanger
Jean-Luc Lupien
Olfa Ben Yahia
Stéphane Martel
Gunes Karabulut Kurt
The rise in low Earth orbit (LEO) satellite Internet services has led to increasing demand, often exceeding available data rates and comprom… (voir plus)ising the quality of service. While deploying more satellites offers a short-term fix, designing higher-performance satellites with enhanced transmission capabilities provides a more sustainable solution. Achieving the necessary high capacity requires interconnecting multiple modem banks within a satellite payload. However, there is a notable gap in research on internal packet routing within extremely high-throughput satellites. To address this, we propose a real-time optimal flow allocation and priority queue scheduling method using online convex optimization-based model predictive control. We model the problem as a multi-commodity flow instance and employ an online interior-point method to solve the routing and scheduling optimization iteratively. This approach minimizes packet loss and supports real-time rerouting with low computational overhead. Our method is tested in simulation on a next-generation extremely high-throughput satellite model, demonstrating its effectiveness compared to a reference batch optimization and to traditional methods.
THInC: A Theory-Driven Framework for Computational Humor Detection
Victor De Marez
Thomas Winters
Humor is a fundamental aspect of human communication and cognition, as it plays a crucial role in social engagement. Although theories about… (voir plus) humor have evolved over centuries, there is still no agreement on a single, comprehensive humor theory. Likewise, computationally recognizing humor remains a significant challenge despite recent advances in large language models. Moreover, most computational approaches to detecting humor are not based on existing humor theories. This paper contributes to bridging this long-standing gap between humor theory research and computational humor detection by creating an interpretable framework for humor classification, grounded in multiple humor theories, called THInC (Theory-driven Humor Interpretation and Classification). THInC ensembles interpretable GA2M classifiers, each representing a different humor theory. We engineered a transparent flow to actively create proxy features that quantitatively reflect different aspects of theories. An implementation of this framework achieves an F1 score of 0.85. The associative interpretability of the framework enables analysis of proxy efficacy, alignment of joke features with theories, and identification of globally contributing features. This paper marks a pioneering effort in creating a humor detection framework that is informed by diverse humor theories and offers a foundation for future advancements in theory-driven humor classification. It also serves as a first step in automatically comparing humor theories in a quantitative manner.
THInC: A Theory-Driven Framework for Computational Humor Detection
Victor De Marez
Thomas Winters
Humor is a fundamental aspect of human communication and cognition, as it plays a crucial role in social engagement. Although theories about… (voir plus) humor have evolved over centuries, there is still no agreement on a single, comprehensive humor theory. Likewise, computationally recognizing humor remains a significant challenge despite recent advances in large language models. Moreover, most computational approaches to detecting humor are not based on existing humor theories. This paper contributes to bridging this long-standing gap between humor theory research and computational humor detection by creating an interpretable framework for humor classification, grounded in multiple humor theories, called THInC (Theory-driven Humor Interpretation and Classification). THInC ensembles interpretable GA2M classifiers, each representing a different humor theory. We engineered a transparent flow to actively create proxy features that quantitatively reflect different aspects of theories. An implementation of this framework achieves an F1 score of 0.85. The associative interpretability of the framework enables analysis of proxy efficacy, alignment of joke features with theories, and identification of globally contributing features. This paper marks a pioneering effort in creating a humor detection framework that is informed by diverse humor theories and offers a foundation for future advancements in theory-driven humor classification. It also serves as a first step in automatically comparing humor theories in a quantitative manner.
Audio Editing with Non-Rigid Text Prompts
Francesco Paissan
Zhepei Wang
Paris Smaragdis
In this paper, we explore audio-editing with non-rigid text edits. We show that the proposed editing pipeline is able to create audio edits … (voir plus)that remain faithful to the input audio. We explore text prompts that perform addition, style transfer, and in-painting. We quantitatively and qualitatively show that the edits are able to obtain results which outperform Audio-LDM, a recently released text-prompted audio generation model. Qualitative inspection of the results points out that the edits given by our approach remain more faithful to the input audio in terms of keeping the original onsets and offsets of the audio events.
Clinical Care Trajectory Assessment of Children with Congenital Diaphragmatic Hernia and Neurodevelopmental Impairment
Alexandra Dimmer
Gabriel Altit
Sabrina Beauseigle
Elena Guadagno
Louise Koclas
Katryn Paquette
Ana Sant’Anna
Adam Shapiro
Pramod Puligandla
Data Privacy for Record Linkage and Beyond
Shurong Lin
In a data-driven world, two prominent research problems are record linkage and data privacy, among others. Record linkage is essential for i… (voir plus)mproving decision-making by integrating information of the same entities from different sources. On the other hand, data privacy research seeks to balance the need to extract accurate insights from data with the imperative to protect the privacy of the entities involved. Inevitably, data privacy issues arise in the context of record linkage. This article identifies two complementary aspects at the intersection of these two fields: (1) how to ensure privacy during record linkage and (2) how to mitigate privacy risks when releasing the analysis results after record linkage. We specifically discuss privacy-preserving record linkage, differentially private regression, and related topics.
Do machine learning methods Make Better predictions in pharmacoepidemiology?
Ana Paula Pena-Gralle
Mireille E. Schnitzer
Sofia-Nada Boureguaa
Félix Morin
Caroline Sirois
Alice Dragomir
Lucie Blais
Predicting Five-Year All-Cause Mortality in COPD Patients Using Machine Learning
Ana Paula Pena-Gralle
Amélie Forget
Sofia-Nada Boureguaa
Lucie Blais
Virtual Reality for Pediatric Trauma Education - A Preliminary Face and Content Validation Study.
Fabio Botelho
Said Ashkar
Shreenik Kundu
Tj Matthews
Elena Guadgano
Virtual Reality for Pediatric Trauma Education - A Preliminary Face and Content Validation Study
Fabio Botelho
Said Ashkar
Shreenik Kundu
Tj Matthews
Elena Guadgano
Herbarium collections remain essential in the age of community science
Isaac Eckert
Anne Bruneau
D. Metsger
Simon Joly
T. Dickinson