Publications

From Assistive Devices to Manufacturing Cobot Swarms
Monica Li
Bruno Belzile
Ali Imran
Lionel Birglen
David St-Onge
This paper provides an overview of the latest trends in robotics research and development, with a particular focus on applications in manufa… (voir plus)cturing and industrial settings. We highlight recent advances in robot design, including cutting-edge collaborative robot mechanics and advanced safety features, as well as exciting developments in perception and human-swarm interaction. By examining recent contributions from Kinova, a leading robotics company, we illustrate the differences between industry and academia in their approaches to developing innovative robotic systems and technologies that enhance productivity and safety in the workplace. Ultimately, this paper demonstrates the tremendous potential of robotics to revolutionize manufacturing and industrial operations, and underscores the crucial role of companies like Kinova in driving this transformation forward.
Motion In-Betweening via Deep <inline-formula><tex-math notation="LaTeX">$\Delta$</tex-math><alternatives><mml:math><mml:mi>Δ</mml:mi></mml:math><inline-graphic xlink:href="oreshkin-ieq1-3309107.gif"/></alternatives></inline-formula>-Interpolator
Boris Oreshkin
Antonios Valkanas
Félix Harvey
Louis-Simon Ménard
Florent Bocquelet
We show that the task of synthesizing human motion conditioned on a set of key frames can be solved more accurately and effectively if a dee… (voir plus)p learning based interpolator operates in the delta mode using the spherical linear interpolator as a baseline. We empirically demonstrate the strength of our approach on publicly available datasets achieving state-of-the-art performance. We further generalize these results by showing that the
Speech Self-Supervised Representations Benchmarking: a Case for Larger Probing Heads
Salah Zaiem
Youcef Kemiche
Titouan Parcollet
Slim Essid
Efficient Epistemic Uncertainty Estimation in Regression Ensemble Models Using Pairwise-Distance Estimators
Lucas Berry
This work introduces an efficient novel approach for epistemic uncertainty estimation for ensemble models for regression tasks using pairwis… (voir plus)e-distance estimators (PaiDEs). Utilizing the pairwise-distance between model components, these estimators establish bounds on entropy. We leverage this capability to enhance the performance of Bayesian Active Learning by Disagreement (BALD). Notably, unlike sample-based Monte Carlo estimators, PaiDEs exhibit a remarkable capability to estimate epistemic uncertainty at speeds up to 100 times faster while covering a significantly larger number of inputs at once and demonstrating superior performance in higher dimensions. To validate our approach, we conducted a varied series of regression experiments on commonly used benchmarks: 1D sinusoidal data,
Party Prediction for Twitter
Kellin Pelrine
Anne Imouza
Zachary Yang
Jacob-Junqi Tian
Sacha Lévy
Gabrielle Desrosiers-Brisebois
Aarash Feizi
C'ecile Amadoro
André Blais
Jean-François Godbout
A comparison of reinforcement learning frameworks for software testing tasks
Paulina Stevia Nouwou Mindom
Amin Nikanjam
Multivariate Time-Series Anomaly Detection with Contaminated Data: Application to Physiological Signals
Thi Kieu Khanh Ho
Reinforcement Learning Informed Evolutionary Search for Autonomous Systems Testing
Dmytro Humeniuk
Giuliano Antoniol
Evolutionary search-based techniques are commonly used for testing autonomous robotic systems. However, these approaches often rely on compu… (voir plus)tationally expensive simulator-based models for test scenario evaluation. To improve the computational efficiency of the search-based testing, we propose augmenting the evolutionary search (ES) with a reinforcement learning (RL) agent trained using surrogate rewards derived from domain knowledge. In our approach, known as RIGAA (Reinforcement learning Informed Genetic Algorithm for Autonomous systems testing), we first train an RL agent to learn useful constraints of the problem and then use it to produce a certain part of the initial population of the search algorithm. By incorporating an RL agent into the search process, we aim to guide the algorithm towards promising regions of the search space from the start, enabling more efficient exploration of the solution space. We evaluate RIGAA on two case studies: maze generation for an autonomous ant robot and road topology generation for an autonomous vehicle lane keeping assist system. In both case studies, RIGAA converges faster to fitter solutions and produces a better test suite (in terms of average test scenario fitness and diversity). RIGAA also outperforms the state-of-the-art tools for vehicle lane keeping assist system testing, such as AmbieGen and Frenetic.
Speech Self-Supervised Representation Benchmarking: Are We Doing it Right?
Salah Zaiem
Youcef Kemiche
Titouan Parcollet
Slim Essid
Self-supervised learning (SSL) has recently allowed leveraging large datasets of unlabeled speech signals to reach impressive performance on… (voir plus) speech tasks using only small amounts of annotated data. The high number of proposed approaches fostered the need and rise of extended benchmarks that evaluate their performance on a set of downstream tasks exploring various aspects of the speech signal. However, and while the number of considered tasks has been growing, most rely upon a single decoding architecture that maps the frozen SSL representations to the downstream labels. This work investigates the robustness of such benchmarking results to changes in the decoder architecture. Interestingly, it appears that varying the architecture of the downstream decoder leads to significant variations in the leaderboards of most tasks. Concerningly, our study reveals that benchmarking using limited decoders may cause a counterproductive increase in the sizes of the developed SSL models.
Towards Few-shot Coordination: Revisiting Ad-hoc Teamplay Challenge In the Game of Hanabi
Hadi Nekoei
Xutong Zhao
Janarthanan Rajendran
Miao Liu
Cooperative Multi-agent Reinforcement Learning (MARL) algorithms with Zero-Shot Coordination (ZSC) have gained significant attention in rece… (voir plus)nt years. ZSC refers to the ability of agents to coordinate zero-shot (without additional interaction experience) with independently trained agents. While ZSC is crucial for cooperative MARL agents, it might not be possible for complex tasks and changing environments. Agents also need to adapt and improve their performance with minimal interaction with other agents. In this work, we show empirically that state-of-the-art ZSC algorithms have poor performance when paired with agents trained with different learning methods, and they require millions of interaction samples to adapt to these new partners. To investigate this issue, we formally defined a framework based on a popular cooperative multi-agent game called Hanabi to evaluate the adaptability of MARL methods. In particular, we created a diverse set of pre-trained agents and defined a new metric called adaptation regret that measures the agent's ability to efficiently adapt and improve its coordination performance when paired with some held-out pool of partners on top of its ZSC performance. After evaluating several SOTA algorithms using our framework, our experiments reveal that naive Independent Q-Learning (IQL) agents in most cases adapt as quickly as the SOTA ZSC algorithm Off-Belief Learning (OBL). This finding raises an interesting research question: How to design MARL algorithms with high ZSC performance and capability of fast adaptation to unseen partners. As a first step, we studied the role of different hyper-parameters and design choices on the adaptability of current MARL algorithms. Our experiments show that two categories of hyper-parameters controlling the training data diversity and optimization process have a significant impact on the adaptability of Hanabi agents.
MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization
Andoni I. Garmendia
Josu Ceberio
Alexander Mendiburu
Open, Closed, or Small Language Models for Text Classification?
Hao Yu
Zachary Yang
Kellin Pelrine
Jean-François Godbout
Recent advancements in large language models have demonstrated remarkable capabilities across various NLP tasks. But many questions remain, … (voir plus)including whether open-source models match closed ones, why these models excel or struggle with certain tasks, and what types of practical procedures can improve performance. We address these questions in the context of classification by evaluating three classes of models using eight datasets across three distinct tasks: named entity recognition, political party prediction, and misinformation detection. While larger LLMs often lead to improved performance, open-source models can rival their closed-source counterparts by fine-tuning. Moreover, supervised smaller models, like RoBERTa, can achieve similar or even greater performance in many datasets compared to generative LLMs. On the other hand, closed models maintain an advantage in hard tasks that demand the most generalizability. This study underscores the importance of model selection based on task requirements