Plus de 60 publications scientifiques affiliées à Mila acceptées à NeurIPS 2024

Logo Mila and NeurIPS

Du 10 au 15 décembre, les chercheuses et chercheurs de Mila participeront à la trente-huitième conférence annuelle sur les systèmes de traitement de l'information neuronale (NeurIPS 2024) à Vancouver, au Canada.

Cette année, elles et ils présenteront plus de 60 publications scientifiques lors de la conférence principale afin de partager les résultats de leur recherche en intelligence artificielle (IA) avec leurs pairs du monde entier. Elles et ils présenteront également des dizaines de publications lors d’ateliers thématiques.

Voici une liste des articles acceptés à NeurIPS 2024 qui contiennent au moins un·e auteur·rice affilié·e à Mila:

 

Conférence principale

TitleAuthors
Cell ontology guided transcriptome foundation modelXinyu Yuan, Zhihao Zhan, Zuobai Zhang, Manqi Zhou, Jianan Zhao, Boyu Han, Yue Li, Jian Tang
Balancing Context Length and Mixing Times for Reinforcement Learning at ScaleMatthew D Riemer, Khimya Khetarpal, Janarthanan Rajendran, Sarath Chandar
Self-Consuming Generative Models with Curated Data Provably Optimize Human PreferencesDamien Ferbach, Quentin Bertrand, Joey Bose, Gauthier Gidel
Normalization and effective learning rates in reinforcement learningClare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, Hado van Hasselt, Razvan Pascanu, Will Dabney
Amortizing intractable inference in diffusion models for vision, language, and controlSiddarth Venkatraman, Moksh J. Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-Brooks, Yoshua Bengio, Glen Berseth, Nikolay Malkin
Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem SolvingAniket Rajiv Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy P Lillicrap, Danilo Jimenez Rezende, Yoshua Bengio, Michael Curtis Mozer, Sanjeev Arora
QGFN: Controllable Greediness with Action ValuesElaine Lau, Stephen Zhewen Lu, Ling Pan, Doina Precup, Emmanuel Bengio
Parseval Regularization for Continual Reinforcement LearningWesley Chung, Lynn Cherif, Doina Precup, David Meger
RGFN: Synthesizable Molecular Generation Using GFlowNetsMichał Koziarski, Andrei Rekesh, Dmytro Shevchuk, Almer M. van der Sloot, Piotr Gaiński, Yoshua Bengio, Cheng-Hao Liu, Mike Tyers, Robert A. Batey
Listenable Maps for Zero-Shot Audio ClassifiersFrancesco Paissan, Luca Della Libera, Mirco Ravanelli, Cem Subakan
A Generative Model of Symmetry TransformationsJames Urquhart Allingham, Bruno Mlodozeniec, Shreyas Padhy, Javier Antoran, David Krueger, Richard E. Turner, Eric Nalisnick, José Miguel Hernández-Lobato
Adaptive Exploration for Data-Efficient General Value Function EvaluationsArushi Jain, Josiah P. Hanna, Doina Precup
Efficient Leverage Score Sampling for Tensor Train DecompositionVivek Bharadwaj, Beheshteh T. Rakhshan, Osman Asif Malik, Guillaume Rabusseau
Many-Shot In-Context LearningRishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Luis Rosias, Stephanie C.Y. Chan, Biao Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, John D Co-Reyes, Eric Chu, Feryal Behbahani, Aleksandra Faust, Hugo Larochelle
A Foundation Model for Zero-shot Logical Query ReasoningMikhail Galkin, Jincheng Zhou, Bruno Ribeiro, Jian Tang, Zhaocheng Zhu
Efficient Reinforcement Learning by Discovering Neural PathwaysSamin Yeasar Arnob, Riyasat Ohib, Sergey Plis, Amy Zhang, Alessandro Sordoni, Doina Precup
How Molecules Impact Cells: Unlocking Contrastive PhenoMolecular RetrievalPhilip Fradkin, Puria Azadi Moghadam, Karush Suri, Frederik Wenkel, Ali Bashashati, Maciej Sypetkowski, Dominique Beaini
Do LLMs Build World Representations? Probing Through the Lens of State AbstractionZichao Li, Yanshuai Cao, Jackie C. K. Cheung
ET-Flow: Equivariant Flow-Matching for Molecular Conformer GenerationMajdi Hassan, Nikhil Shenoy, Jungyoon Lee, Hannes Stärk, Stephan Thaler, Dominique Beaini
Improving Deep Reinforcement Learning by Reducing the Chain Effect of Value and Policy ChurnHongyao Tang, Glen Berseth
Code Repair with LLMs gives an Exploration-Exploitation TradeoffHao Tang, Keya Hu, Jin Peng Zhou, Si Cheng Zhong, Wei-Long Zheng, Xujie Si, Kevin Ellis
Simplifying Constraint Inference with Inverse Reinforcement LearningAdriana Hugessen, Harley Wiltzer, Glen Berseth
On the Scalability of GNNs for Molecular GraphsMaciej Sypetkowski, Frederik Wenkel, Farimah Poursafaei, Nia Dickson, Karush Suri, Philip Fradkin, Dominique Beaini
The Factorization Curse: Which Tokens You Predict Underlie the Reversal Curse and MoreOuail Kitouni, Niklas Nolte, Adina Williams, Michael Rabbat, Diane Bouchacourt, Mark Ibrahim
Conformal Inverse OptimizationBo Lin, Érick Delage, Timothy Chan
Soft Prompt Threats: Attacking Safety Alignment and Unlearning in Open-Source LLMs through the Embedding SpaceLeo Schwinn, David Dobre, Sophie Xhonneux, Gauthier Gidel, Stephan Günnemann
Offline Multitask Representation Learning for Reinforcement LearningHaque Ishfaq, Thanh Nguyen-Tang, Songtao Feng, Raman Arora, Mengdi Wang, Ming Yin, Doina Precup
Improving Context-Aware Preference Modeling for Language ModelsSilviu Pitis, Ziang Xiao, Nicolas Le Roux, Alessandro Sordoni
When is an Embedding Model More Promising than Another?Maxime DARRIN, Philippe Formont, Ismail Ben Ayed, Jackie C. K. Cheung, Pablo Piantanida
Trajectory Flow Matching with Applications to Clinical Time Series ModellingXi Zhang, Yuan Pu, Yuki Kawamura, Andrew Loza, Yoshua Bengio, Dennis Shung, Alexander Tong
Efficient Adversarial Training in LLMs with Continuous AttacksSophie Xhonneux, Alessandro Sordoni, Stephan Günnemann, Gauthier Gidel, Leo Schwinn
HardCore Generation: Generating Hard UNSAT Problems for Data AugmentationJoseph Cotnareanu, Zhanguang Zhang, Hui-Ling Zhen, Yingxue Zhang, Mark Coates
Stress-Testing Capability Elicitation With Password-Locked ModelsRyan Greenblatt, Fabien Roger, Dmitrii Krasheninnikov, David Krueger
Geometry of naturalistic object representations in recurrent neural network models of working memoryXiaoxuan Lei, Takuya Ito, Pouya Bashivan
Improved off-policy training of diffusion samplersMarcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks, Alexandre Adam, Yoshua Bengio, Nikolay Malkin
Wasserstein Distributionally Robust Optimization through the Lens of Structural Causal Models and Individual FairnessAhmad Reza Ehyaei, Golnoosh Farnadi, Samira Samadi
Grounding Multimodal Large Language Models in ActionsAndrew Szot, Bogdan Mazoure, Harsh Agrawal, Devon Hjelm, Zsolt Kira, Alexander T Toshev
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust ClassifiersJonas Ngnawe, Sabyasachi Sahoo, Yann Batiste Pequignot, Frederic Precioso, Christian Gagne
Harnessing small projectors and multiple views for efficient vision pretrainingArna Ghosh, Kumar Krishna Agrawal, Shagun Sodhani, Adam Oberman, Blake Aaron Richards
Density-based User Representation using Gaussian Process Regression for Multi-interest Personalized RetrievalHaolun Wu, Ofer Meshi, Masrour Zoghi, Fernando Diaz, Xue Liu, Craig Boutilier, MARYAM KARIMZADEHGAN
Interpreting Learned Feedback Patterns in Large Language ModelsLuke Marks, Amir Abdullah, Clement Neo, Rauno Arike, David Krueger, Philip Torr, Fazl Barez
Periodic agent-state based Q-learning for POMDPsAmit Sinha, Matthieu Geist, Aditya Mahajan
On improved Conditioning Mechanisms and Pre-training Strategies for Diffusion ModelsTariq Berrada, Pietro Astolfi, Melissa Hall, Reyhane Askari Hemmat, Yohann Benchetrit, Marton Havasi, Matthew J. Muckley, Karteek Alahari, Adriana Romero-Soriano, Jakob Verbeek, Michal Drozdzal
VisMin: Visual Minimal-Change UnderstandingRabiul Awal, Saba Ahmadi, Le Zhang, Aishwarya Agrawal
4+3 Phases of Compute-Optimal Neural Scaling LawsElliot Paquette, Courtney Paquette, Lechao Xiao, Jeffrey Pennington
On the Scalability of Certified Adversarial Robustness with Generated DataThomas Altstidl, David Dobre, Arthur Kosmala, Bjoern Eskofier, Gauthier Gidel, Leo Schwinn
Predicting Future Actions of Reinforcement Learning AgentsStephen Chung, Scott Niekum, David Krueger
The High Line: Exact Risk and Learning Rate Curves of Stochastic Adaptive Learning Rate AlgorithmsElizabeth Collins-Woodfin, Inbar Seroussi, Begoña García Malaxechebarría, Andrew Mackenzie, Elliot Paquette, Courtney Paquette
Multi-Scale Representation Learning for Protein Fitness PredictionZuobai Zhang, Pascal Notin, Yining Huang, Aurelie Lozano, Vijil Chenthamarakshan, Debora Susan Marks, Payel Das, Jian Tang
GenRL: Multimodal-foundation world models for generalization in embodied agentsPietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Aaron Courville, Sai Rajeswar
Towards a "Universal Translator" for Neural Dynamics at Single-CellYizi Zhang, Yanchen Wang, Donato M. Jiménez-Benetó, Zixuan Wang, Mehdi Azabou, Blake Aaron Richards, Renee Tung, Olivier Winter, International Brain Laboratory, Eva L Dyer, Liam Paninski, Cole Lincoln Hurwitz
Sequence-Augmented SE(3)-Flow Matching For Conditional Protein GenerationGuillaume Huguet, James Vuckovic, Kilian FATRAS, Eric Thibodeau-Laufer, Pablo Lemos, Riashat Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael M. Bronstein, Alexander Tong, Joey Bose
Metric Flow Matching for Smooth Interpolations on the Data ManifoldKacper Kapusniak, Peter Potaptchik, Teodora Reu, Leo Zhang, Alexander Tong, Michael M. Bronstein, Joey Bose, Francesco Di Giovanni
Fisher Flow Matching for Generative Modelling over Discrete DataOscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ilkay Ceylan, Michael Bronstein, Joey Bose
Learning Action and Reasoning-Centric Image Editing from Videos and SimulationBenno Krojer, Dheeraj Vattikonda, Luis Lara, Varun Jampani, Eva Portelance, Christopher Pal, Siva Reddy
Action Gaps and Advantages in Continuous-Time Distributional Reinforcement LearningHarley Wiltzer, Marc G. Bellemare, David Meger, Patrick Shafto, Yash Jhaveri
Foundations of Multivariate Distributional Reinforcement LearningHarley Wiltzer, Jesse Farebrother, Arthur Gretton, Mark Rowland
Learning Successor Features the Simple WayRaymond Chua, Arna Ghosh, Christos Kaplanis, Blake Aaron Richards, Doina Precup
Doob's Lagrangian: A Sample-Efficient Variational Approach to Transition Path SamplingYuanqi Du, Michael Plainer, Rob Brekelmans, Chenru Duan, Frank Noé, Carla P. Gomes, Alán Aspuru-Guzik, Kirill Neklyudov
MSA Generation with Seqs2Seqs Pretraining: Advancing Protein Structure PredictionsLe Zhang, Jiayang Chen, Tao Shen, Yu Li, Siqi Sun
Slight Corruption in Pre-training Data Makes Better Diffusion ModelsHao Chen, Yujin Han, Diganta Misra, Xiang Li, Kai Hu, Difan Zou, Masashi Sugiyama, Jindong Wang, Bhiksha Raj
Towards training digitally-tied analog blocks via hybrid gradient computationNest, Timothy; Ernoult, Maxence
What Is Missing For Graph Homophily? Disentangling Graph Homophily For Graph Neural NetworksYilun Zheng, Sitao Luan, Lihui Chen

Dataset et Benchmark Track

TitleAuthors
Consent in Crisis: The Rapid Decline of the AI Data CommonsShayne Longpre, Robert Mahari, Ariel Lee, Campbell Lund, Hamidah Oderinwale, William Brannon, Nayan Saxena, Naana Obeng-Marnu, Tobin South, Cole Hunter, Kevin Klyman, Christopher Klamm, Hailey Schoelkopf, Nikhil Singh, Manuel Cherep, Ahmad Anis, An Dinh, Caroline Chitongo, Da Yin, Damien Sileo, Deividas Mataciunas, Diganta Misra, Emad Alghamdi, Enrico Shippole, Jianguo Zhang, Joanna Materzynska, Kun Qian, Kush Tiwary, Lester Miranda, Manan Dey, Minnie Liang, Mohammed Hamdy, Niklas Muennighoff, Seonghyeon Ye, Seungone Kim, Shrestha Mohanty, Vipul Gupta, Vivek Sharma, Vu Minh Chien, Xuhui Zhou, Yizhi Li, Caiming Xiong, Luis Villa, Stella Biderman, Hanlin Li, Daphne Ippolito, Sara Hooker, Jad Kabbara, Sandy Pentland
WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work TasksLéo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault Le Sellier De Chezelles, Quentin Cappart, Nicolas Chapados, Alexandre Lacoste, Alexandre Drouin
RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference ContentJoao Monteiro, Pierre-Andre Noel, Étienne Marcotte, Sai Rajeswar, Valentina Zantedeschi, David Vazquez, Nicolas Chapados, Christopher Pal, Perouz Taslakian
Expecting The Unexpected: Towards Broad Out-Of-Distribution DetectionCharles Guille-Escuret, Pierre-Andre Noel, Ioannis Mitliagkas, David Vazquez, Joao Monteiro
CableInspect-AD: An Expert-Annotated Anomaly Detection DatasetAkshatha Arodi, Margaux Luck, Jean-Luc Bedwani, Aldo Zaimi, Ge Li, Nicolas Pouliot, Julien Beaudry, Gaetan Marceau Caron
Using Unity to Help Solve Reinforcement LearningConnor Brennan, Andrew Robert Williams, Omar G. Younis, Vedant Vyas, Daria Yasafova, Irina Rish
CVQA: Culturally-diverse Multilingual Visual Question Answering BenchmarkDavid Romero, Chenyang Lyu, Haryo Akbarianto Wibowo, Teresa Lynn, Injy Hamed, Aditya Nanda Kishore, Aishik Mandal, Alina Dragonetti, Artem Abzaliev, Atnafu Lambebo Tonja, Bontu Fufa Balcha, Chenxi Whitehouse, Christian Salamea, Dan John Velasco, David Ifeoluwa Adelani et al.
Reactzyme: A Benchmark for Enzyme-Reaction PredictionChenqing Hua, Bozitao Zhong, Sitao Luan, Liang Hong, Guy Wolf, Doina Precup, Shuangjia Zheng
CALE: Continuous Arcade Learning EnvironmentJesse Farebrother, Pablo Samuel Castro

Journal à Conference Track

Reproducibility Study on Adversarial Attacks Against Robust Transformer TrackersFatemeh Nourilenjan Nokabadi, Jean-Francois Lalonde, Christian Gagné

Creative AI Track

Exploratory Study Of Human-AI Interaction For Hindustani MusicNithya Shikarpur, Cheng-Zhi Anna Huang

Ateliers

TitleAuthors
LO: Compute-Efficient Meta-Generalization of Learned OptimizersBenjamin Thérien, Charles-Étienne Joseph, Boris Knyazev, Edouard Oyallon, Irina Rish, Eugene Belilovsky
General-Purpose Brain Foundation Models for Time-Series Neuroimaging DataMohammad Javad Darvishi Bayazi, Hena Ghonia, Roland Riachi, Bruno Aristimunha, Arian Khorasani, Md Rifat Arefin, Amin Darabi, Guillaume Dumas, Irina Rish
Understanding Adam Requires Better Rotation Dependent AssumptionsTianyue H. Zhang, Lucas Maes, Charles Guille-Escuret, Alexia Jolicoeur-Martineau, Ioannis Mitliagkas, Simon Lacoste-Julien, Damien Scieur
Crystal Design Amidst Noisy DFT Signals: A Reinforcement Learning ApproachPrashant Govindarajan, Mathieu Reymond, Santiago Miret, Mariano Phielipp, Sarath Chandar
HoneyComb: A Flexible LLM-Based Agent System for Materials ScienceHuan Zhang, Yu Song, Ziyu Hou, Santiago Miret, Bang Liu
SymmCD: Symmetry-Preserving Crystal Generation with Diffusion ModelsDaniel Levy, Siba Smarak Panigrahi, Sékou-Oumar Kaba, Qiang Zhu, Mikhail Galkin, Santiago Miret, Siamak Ravanbakhsh
MatExpert: Decomposing Materials Discovery By Mimicking Human ExpertsQianggang Ding, Santiago Miret, Bang Liu
Efficient Design-and-Control Automation with Reinforcement Learning and Adaptive ExplorationJiajun Fan, Hongyao Tang, Michael Przystupa, Mariano Phielipp, Santiago Miret, Glen Berseth
LLMs and Personalities: Inconsistencies Across ScalesTosato Tommaso, Mahmood Hegazy, David Lemay, Mohammed Abukalam, Irina Rish, Guillaume Dumas
Evaluating Interventional Reasoning Capabilities of Large Language ModelsTejas Kasetty, Divyat Mahajan, Gintare Karolina Dziugaite, Alexandre Drouin, Dhanya Sridhar
Testing causal hypotheses through Hierarchical Reinforcement LearningAnthony GX-Chen, Dongyan Lin, Mandana Samiei
General Causal Imputation via Synthetic InterventionsMarco Jiralerspong, Thomas Jiralerspong, Vedant Shah, Dhanya Sridhar, Gauthier Gidel
Beyond Causal Discovery for Astronomy: Learning Meaningful Representations with Independent Component AnalysisZehao Jin, Mario Pasquato, Benjamin L. Davis, A. Macciò, Yashar Hezaveh
MAP: Model Merging with Amortized Pareto Front Using Limited ComputationLu Li, Tianyu Zhang, Zhiqi Bu, Suyuchen Wang, Huan He, Jie Fu, Yonghui Wu, Jiang Bian, Yong Chen, Yoshua Bengio
Learning Robust Representations for Transfer in Reinforcement LearningFaisal Mohamed, Roger Creus Castanyer, Hongyao Tang, Zahra Sheikhbahaee, Glen Berseth
A Layer Selection Approach to Test Time AdaptationSabyasachi Sahoo, Mostafa ElAraby, Jonas Ngnawe, Yann Batiste Pequignot, Frederic Precioso, Christian Gagne
Faster, More Efficient RLHF through Off-Policy Asynchronous LearningMichael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal, Aaron Courville
Molphenix: A Multimodal Foundation Model for PhenoMolecular RetrievalPhilip Fradkin, Puria Azadi Moghadam, Karush Suri, Frederik Wenkel, Maciej Sypetkowski, Dominique Beaini
Sample compression unleashed : New generalization bounds for real valued lossesMathieu Bazinet, Valentina Zantedeschi, Pascal Germain
On the Implicit Relation Between Low-Rank Adaptation and Differential PrivacySaber Malekmohammadi, Golnoosh Farnadi
Library Learning Doesn’t: The Curious Case of the Single-Use “Library”Ian Berlot-Attwell, Frank Rudzicz, Xujie Si
AI-Assisted Generation of Difficult Math QuestionsVedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Jiatong Yu, Yinghui He, Nan Rosemary Ke, Michael Curtis Mozer, Yoshua Bengio, Sanjeev Arora, Anirudh Goyal
VinePPO: Accurate Credit Assignment in RL for LLM Mathematical ReasoningAmirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy, Aaron Courville, Nicolas Le Roux
Fine-Tuning Web Agents: It Works, But It's Trickier Than You ThinkMassimo Caccia, Megh Thakkar, Léo Boisvert, Thibault Le Sellier de Chezelles, Alexandre Piché, Nicolas Chapados, Alexandre Drouin, Maxime Gasse, Alexandre Lacoste
Hallucination Detox: Sensitive Neuron Dropout (SeND) for Large Language Model TrainingShahrad Mohammadzadeh, Juan David Guerra, Marco Bonizzato, Reihaneh Rabbany, Golnoosh Farnadi
Unlearning in- vs. out-of-distribution data in LLMs under gradient-based methodsTeodora Baluta, Gintare Karolina Dziugaite, Pascal Lamblin, Fabian Pedregosa, Danny Tarlow
Identifying and Addressing Delusions for Target-Directed Decision-MakingHarry Zhao, Mingde Zhao, Tristan Sylvain, Doina Precup, Yoshua Bengio
Can Safety Fine-Tuning Be More Principled? Lessons Learned from CybersecurityDavid Williams-King, Linh Le, Adam Oberman, Yoshua Bengio
The Structural Safety Generalization ProblemTom Gibbs, Julius Broomfield, George Ingebretsen, Ethan Kosak-Hine, Tia Nasir, Jason Zhang, Reihaneh Iranmanesh, Sara Pieri, Reihaneh Rabbany, Kellin Pelrine
Simulation System Towards Solving Societal-Scale ManipulationMaximilian Puelma Touzel, Sneheel Sarangi, Austin Welch, Gayatri K, Dan Zhao, Zachary Yang, Hao Yu, Tom Gibbs, Ethan Kosak-Hine, Andreea Musulan, Camille Thibault, Busra Tugce Gurbuz, Reihaneh Rabbany, Jean-François Godbout, Kellin Pelrine
Quantifying Likeness: A Simple Machine Learning Approach to Identifying Copyright Infringement in (AI-Generated) ArtworkMichaela Drouillard, Ryan Spencer, Nikée Nantambu-Allen, Tegan Maharaj
Epistemic Integrity in Large Language ModelsBijean Ghafouri, Shahrad Mohammadzadeh, James Zhou, Pratheeksha Nair, Jacob-Junqi Tian, Mayank Goel, Reihaneh Rabbany, Jean-François Godbout, Kellin Pelrine
Bias Analysis in Unconditional Image Generative ModelsXiaofeng Zhang, Simon Lacoste-Julien, Aaron Courville, Yash Goyal
How Learning Rates Shape Neural Network Focus: Insights from Example RankingEkaterina Lobacheva, Keller Jordan, Aristide Baratin, Nicolas Le Roux
Learning Stochastic Rainbow NetworksVivian White, Muawiz Sajjad Chaudhary, Guy Wolf, Guillaume Lajoie, Kameron Decker Harris
Input Space Mode Connectivity in Deep Neural NetworksJakub Vrabel, Ori Shem-Ur, Yaron Oz, David Krueger
The Pitfalls of Memorization: When Memorization Hinders GeneralizationReza Bayat, Mohammad Pezeshki, Elvis Dohmatob, David Lopez-Paz, Pascal Vincent
Language model scaling laws and zero-sum learningAndrei Mircea, Ekaterina Lobacheva, Supriyo Chakraborty, Nima Chitsazan, Irina Rish
VCR: Visual Caption RestorationTianyu Zhang, Suyuchen Wang, Lu Li, Ge Zhang, Perouz Taslakian, Sai Rajeswar, Jie Fu, Bang Liu, Yoshua Bengio
Not All LLM Reasoners Are Created EqualArian Hosseini, Alessandro Sordoni, Daniel Toyama, Aaron Courville, Rishabh Agarwal
Introducing Brain Foundation ModelsMohammad Javad Darvishi Bayazi, Hena Ghonia, Roland Riachi, Bruno Aristimunha, Arian Khorasani, Md Rifat Arefin, Amin Darabi, Sylvain Chevallier, Guillaume Dumas, Irina Rish
TrajGPT: Healthcare Time-Series Representation Learning for Trajectory PredictionZiyang Song, Qincheng Lu, Mike He Zhu, David L. Buckeridge, Yue Li
Context is Key: A Benchmark for Forecasting with Essential Textual InformationArjun Ashok, Andrew Robert Williams, Étienne Marcotte, Valentina Zantedeschi, Jithendaraa Subramanian, Roland Riachi, James Requeima, Alexandre Lacoste, Irina Rish, Nicolas Chapados, Alexandre Drouin
Understanding Permutation Based Model Merging with Feature VisualizationsCongshu Zou, geraldin nanfack, Stefan Horoi, Eugene Belilovsky
Learning Diverse Attacks on Large Language Models for Robust Red-Teaming and Safety TuningSeanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Moksh Jain
Zero-shot Whole-Body Humanoid Control via Behavioral Foundation ModelsAndrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen Xu, Alessandro Lazaric, Matteo Pirotta
Safe Reinforcement Learning for Remote Microgrid Optimization with Industrial ConstraintsHadi Nekoei, Alexandre Blondin Massé, Rachid Hassani, Sarath Chandar, Vincent Mai
Towards Optimizing SQL Generation via LLM RoutingMohammadhossein Malekpour, Nour Shaheen, Foutse Khomh, Amine Mhedhbi
Seq-JEPA: Autoregressive Predictive Learning of Invariant-Equivariant World ModelsHafez Ghaemi, Eilif Muller, Shahab Bakhtiari
CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete ConceptYuXuan Wu, Bonaventure F. P. Dossou, Dianbo Liu
Visual Language Alignment TuningLe Zhang, Qian Yang, Aishwarya Agrawal
Casting hybrid digital-analog training into hierarchical energy-based learnngNest, Timothy; Ernoult, Maxence
Amortizing intractable inference in diffusion models for Bayesian inverse problemsSiddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-Brooks, Yashar Hezaveh, Laurence Perreault-Levasseur, Yoshua Bengio, Glen Berseth, Nikolay Malkin
LLM2Vec: Large Language Models Are Secretly Powerful Text EncodersParishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, Siva Reddy
Beyond the Safety Bundle: Auditing the Helpful and Harmless DatasetKhaoula Chehbouni*, Jonathan Colaço-Carr*, Yash More, Jackie Cheung, Golnoosh Farnadi
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code TasksJuan A. Rodriguez, Xiangru Jian, Siba Smarak Panigrahi, Tianyu Zhang, Aarash Feizi, Abhay Puri, Akshay Kalkunte Suresh, François Savard, Ahmed Masry, Shravan Nayak, Rabiul Awal, Mahsa Massoud, Amirhossein Abaskohi, Zichao Li, Suyuchen Wang, Pierre-Andre Noel, Mats Leon Richter, Saverio Vadacchino, Shubham Agarwal, Sanket Biswas, Sara Shanian, Ying Zhang, Kurt MacDonald, Sathwik Tejaswi Madhusudhan, Joao Monteiro, Krishnamurthy Dj Dvijotham, Torsten Scholak, Nicolas Chapados, Sepideh Kharaghani, Sean Hughes, M. Özsu, Siva Reddy, Marco Pedersoli, Yoshua Bengio, Christopher Pal, Issam H. Laradji, Spandana Gella, Perouz Taslakian, David Vazquez, Sai Rajeswar
MID-Space: Aligning Diverse Communities' Needs to Inclusive Public SpacesShravan Nayak, Rashid Mushkani, Hugo Berard, Allison Cohen, Shin Koseki, Hadrien Bertrand
TrackPGD: Efficient Adversarial Attack using Object Binary Masks against Robust Transformer TrackersFatemeh Nourilenjan Nokabadi, Yann Batiste Pequignot, Jean-Francois Lalonde, Christian Gagné
Adversarial Bounding Boxes Generation (ABBG) Attack against Visual Object TrackersFatemeh Nourilenjan Nokabadi, Jean-Francois Lalonde, Christian Gagné
Symmetry-Aware Generative Modeling through Learned CanonicalizationKusha Sareen, Daniel Levy, Arnab Kumar Mondal, Sékou-Oumar Kaba, Tara Akhound-Sadegh, Siamak Ravanbakhsh
PertEval-scFM: Benchmarking Single-Cell Foundation Models for Perturbation Effect PredictionA. Wenteler, M. Occhetta, N. Branson, M. Huebner, V. Curean, W. T. Dee, W. T. Connell, A. Hawkins-Hooker, S. P. Chung, Y. Ektefaie, A. Gallagher-Syed, C. M. V. Córdova
Pseudo-Asynchronous Local SGD: Robust and Efficient Data-Parallel TrainingHiroki Naganuma, Xinzhi Zhang, Man-Chung Yue, Ioannis Mitliagkas, Russell J. Hewett, Philipp Andre Witte, Yin Tat Lee
Mastering Task Arithmetic: τJp as a Key Indicator for Weight DisentanglementKotaro Yoshida, Yuji Naraki, Takafumi Horie, Ryosuke Yamaki, Ryotaro Shimizu, Yuki Saito, Julian McAuley, Hiroki Naganuma
KD-LoRA: A Hybrid Approach to Efficient Fine-Tuning with LoRA and Knowledge DistillationRambod Azimi, Rishav Rishav, Marek Teichmann, Samira Ebrahimi Kahou
Sliced-Wasserstein-based Anomaly Detection and Open Dataset for Localized Critical Peak RebatesJulien Pallage, Bertrand Scherrer, Salma Naccache, Christophe Bélanger, Antoine Lesage-Landry
Controlling Multimodal LLMs via Reward-guided Decoding
Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero-Soriano, Michal Drozdzal, Aishwarya Agrawal
 
CTRL-O: Language-Controllable Object-Centric Visual Representation LearningAniket Didolkar*, Andrii Zadaianchuk*, Rabiul Awal*, Maximilian Seitzer, Efstratios Gavves, Aishwarya Agrawal
Enhancing Multi-Agent Multi-Modal Collaboration with Fine-Grained Reward ModelingQian Yang, Weixiang Yan, Aishwarya Agrawal
Solving hidden monotone variational inequalities with surrogate lossesRyan D'Orazio, Danilo Vucetic, Zichu Liu, Junhyung Lyle Kim, Ioannis Mitliagkas, Gauthier Gidel
Accelerated Stability in Performative PredictionPedram Khorsandi, Rushil Gupta, Mehrnaz Mofakhami, Simon Lacoste-Julien, Gauthier Gidel
Adaptive Group Robust Ensemble Knowledge DistillationPatrik Kenfack, Ulrich Aïvodji, Samira Ebrahimi Kahou
The Data Minimization Principle in Machine LearningPrakhar Ganesh, Cuong Tran, Reza Shokri, Ferdinando Fioretto
Different Horses for Different Courses: Comparing Bias Mitigation Algorithms in MLPrakhar Ganesh, Usman Gohar, Lu Cheng, Golnoosh Farnadi
Multilingual Hallucination Gaps in Large Language ModelsCléa Chataigner, Afaf Taïk, Golnoosh Farnadi
Correcting misspecified score-based priors for inverse problems: An application to strong gravitational lensingGabriel Missael Barco, Alexandre Adam, Connor Stone, Yashar Hezaveh, Laurence Perreault-Levasseur
Score-based models for 1/f correlated noise correction in James Webb Space Telescope spectral dataSalma Salhi, Alexandre Adam, Loïc Albert, René Doyon, Laurence Perreault-Levasseur
Accelerated Stability in Performative PredictionPedram Khorsandi, Rushil Gupta, Mehrnaz Mofakhami, Simon Lacoste-Julien, Gauthier Gidel
EnzymeFlow: Generating Reaction-specific Enzyme Catalytic Pockets through Flow Matching and Co-Evolutionary DynamicsChenqing Hua, Yong Liu, Dinghuai Zhang, Odin Zhang, Sitao Luan, Kevin K Yang, Guy Wolf, Doina Precup, Shuangjia Zheng
Compositional Risk MinimizationDivyat Mahajan, Mohammad Pezeshki, Ioannis Mitliagkas, Kartik Ahuja, Pascal Vincent
Zero-Shot Learning of Causal ModelsDivyat Mahajan, Jannes Gladrow, Agrin Hilmkil, Cheng Zhang, Meyer Scetbon