Portrait de Yue Li

Yue Li

Membre académique associé
Professeur adjoint, McGill University, École d'informatique
Sujets de recherche
Apprentissage multimodal
Apprentissage profond
Biologie computationnelle
Génétique
Génomique unicellulaire
Grands modèles de langage (LLM)
IA en santé
Modèles bayésiens

Biographie

J'ai obtenu un doctorat en informatique et biologie computationnelle de l'Université de Toronto en 2014. Avant de me joindre à l’Université McGill, j'ai été associé postdoctoral au Computer Science and Artificial Intelligence Laboratory (CSAIL) du Massachusetts Institute of Technology (MIT) (2015-2018).

Mes recherches portent sur le développement de modèles d'apprentissage probabilistes interprétables et de modèles d'apprentissage profond pour modéliser les données génétiques et épigénétiques, les dossiers de santé électroniques et les données génomiques unicellulaires.

En intégrant systématiquement des données multimodales et longitudinales, je cherche à obtenir des applications qui auront des effets tangibles en médecine computationnelle, y compris la construction de systèmes de recommandation clinique intelligents, la prévision des trajectoires de santé des patients, les prédictions personnalisées de risques polygéniques, la caractérisation des mutations génétiques fonctionnelles multitraits, et la dissection des éléments réglementaires spécifiques au type de cellule qui sont à la base des traits complexes et des maladies chez l'homme. Mon programme de recherche couvre trois domaines principaux impliquant l'apprentissage automatique appliqué à la génomique computationnelle et à la santé.

Étudiants actuels

Postdoctorat - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Doctorat - McGill
Postdoctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill

Publications

TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare
Qincheng Lu
Hao Xu
Ziqi Yang
Mike He Zhu
Motivation: Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success in Natural Language Processing a… (voir plus)nd Computer Vision domains. However, the development of PTMs on healthcare time-series data is lagging behind. This underscores the limitations of the existing transformer-based architectures, particularly their scalability to handle large-scale time series and ability to capture long-term temporal dependencies. Methods: In this study, we present Timely Generative Pre-trained Transformer (TimelyGPT). TimelyGPT employs an extrapolatable position (xPos) embedding to encode trend and periodic patterns into time-series representations. It also integrates recurrent attention and temporal convolution modules to effectively capture global-local temporal dependencies. Materials: We evaluated TimelyGPT on two large-scale healthcare time series datasets corresponding to continuous biosignals and irregularly-sampled time series, respectively: (1) the Sleep EDF dataset consisting of over 1.2 billion timesteps; (2) the longitudinal healthcare administrative database PopHR, comprising 489,000 patients randomly sampled from the Montreal population. Results: In forecasting continuous biosignals, TimelyGPT achieves accurate extrapolation up to 6,000 timesteps of body temperature during the sleep stage transition, given a short look-up window (i.e., prompt) containing only 2,000 timesteps. For irregularly-sampled time series, TimelyGPT with a proposed time-specific inference demonstrates high top recall scores in predicting future diagnoses using early diagnostic records, effectively handling irregular intervals between clinical records. Together, we envision TimelyGPT to be useful in various health domains, including long-term patient health state forecasting and patient risk trajectory prediction. Availability: The open-sourced code is available at Github.
Timelygpt: extrapolatable transformer pre-training for long-term time-series forecasting in healthcare
Qincheng Lu
Hao Xu
Ziqi Yang
Mike He Zhu
TrajGPT: Irregular Time-Series Representation Learning of Health Trajectory.
Qincheng Lu
Mike He Zhu
In the healthcare domain, time-series data are often irregularly sampled with varying intervals through outpatient visits, posing challenges… (voir plus) for existing models designed for equally spaced sequential data. To address this, we propose Trajectory Generative Pre-trained Transformer (TrajGPT) for representation learning on irregularly-sampled healthcare time series. TrajGPT introduces a novel Selective Recurrent Attention (SRA) module that leverages a data-dependent decay to adaptively filter irrelevant past information. As a discretized ordinary differential equation (ODE) framework, TrajGPT captures underlying continuous dynamics and enables a time-specific inference for forecasting arbitrary target timesteps without auto-regressive prediction. Experimental results based on the longitudinal EHR data PopHR from Montreal health system and eICU from PhysioNet showcase TrajGPT's superior zero-shot performance in disease forecasting, drug usage prediction, and sepsis detection. The inferred trajectories of diabetic and cardiac patients reveal meaningful comorbidity conditions, underscoring TrajGPT as a useful tool for forecasting patient health evolution.
TrajGPT: Irregular Time-Series Representation Learning of Health Trajectory.
Qincheng Lu
Mike He Zhu
In the healthcare domain, time-series data are often irregularly sampled with varying intervals through outpatient visits, posing challenges… (voir plus) for existing models designed for equally spaced sequential data. To address this, we propose Trajectory Generative Pre-trained Transformer (TrajGPT) for representation learning on irregularly-sampled healthcare time series. TrajGPT introduces a novel Selective Recurrent Attention (SRA) module that leverages a data-dependent decay to adaptively filter irrelevant past information. As a discretized ordinary differential equation (ODE) framework, TrajGPT captures underlying continuous dynamics and enables a time-specific inference for forecasting arbitrary target timesteps without auto-regressive prediction. Experimental results based on the longitudinal EHR data PopHR from Montreal health system and eICU from PhysioNet showcase TrajGPT's superior zero-shot performance in disease forecasting, drug usage prediction, and sepsis detection. The inferred trajectories of diabetic and cardiac patients reveal meaningful comorbidity conditions, underscoring TrajGPT as a useful tool for forecasting patient health evolution.
Single-nucleus chromatin accessibility profiling identifies cell types and functional variants contributing to major depression.
Anjali Chawla
Laura M. Fiori
Wenmin Zang
Malosree Maitra
Jennie Yang
Dariusz Żurawek
Gabriella Frosi
Reza Rahimian
Haruka Mitsuhashi
MA Davoli
Ryan Denniston
Gary Gang Chen
V. Yerko
Deborah Mash
Kiran Girdhar
S. Akbarian
Naguib Mechawar
Matthew Suderman
Corina Nagy
Gustavo Turecki
Single-nucleus chromatin accessibility profiling identifies cell types and functional variants contributing to major depression
Anjali Chawla
Laura M. Fiori
Wenmin Zang
Malosree Maitra
Jennie Yang
Dariusz Żurawek
Gabriella Frosi
Reza Rahimian
Haruka Mitsuhashi
Maria Antonietta Davoli
MA Davoli
Ryan Denniston
Gary Gang Chen
Volodymyr Yerko
Deborah Mash
Kiran Girdhar
Schahram Akbarian
Naguib Mechawar
Matthew Suderman … (voir 3 de plus)
Corina Nagy
Gustavo Turecki
Single-nucleus chromatin accessibility profiling identifies cell types and functional variants contributing to major depression
Anjali Chawla
Laura M. Fiori
Wenmin Zang
Malosree Maitra
Jennie Yang
Dariusz Żurawek
Gabriella Frosi
Reza Rahimian
Haruka Mitsuhashi
Maria Antonietta Davoli
Ryan Denniston
Gary Gang Chen
Volodymyr Yerko
Deborah Mash
Kiran Girdhar
Schahram Akbarian
Naguib Mechawar
Matthew Suderman
Corina Nagy
Gustavo Turecki
Toward whole-genome inference of polygenic scores with fast and memory-efficient algorithms.
Chirayu Anant Haryan
Simon Gravel
Sanchit Misra
Harnessing agent-based frameworks in CellAgentChat to unravel cell-cell interactions from single-cell and spatial transcriptomics
FedWeight: mitigating covariate shift of federated learning on electronic health records data through patients re-weighting
Mike He Zhu
Na Li
Xiaoxiao Li
Dianbo Liu
ECLARE: multi-teacher contrastive learning via ensemble distillation for diagonal integration of single-cell multi-omic data
Integrating multimodal single-cell data, such as scRNA-seq and scATAC-seq, is key for decoding gene regulatory networks but remains challeng… (voir plus)ing due to issues like feature harmonization and limited quantity of paired data. To address these challenges, we introduce ECLARE, a novel framework combining multi-teacher ensemble knowledge distillation with contrastive learning for diagonal integration of single-cell multi-omic data. ECLARE trains teacher models on paired datasets to guide a student model for unpaired data, leveraging a refined contrastive objective and transport-based loss for precise cross-modality alignment. Experiments demonstrate ECLARE’s competitive performance in cell pairing accuracy, multimodal integration and biological structure preservation, indicating that multi-teacher knowledge distillation provides an effective mean to improve a diagonal integration model beyond its zero-shot capabilities. Additionally, we validate ECLARE’s applicability through a case study on major depressive disorder (MDD) data, illustrating its capability to reveal gene regulatory insights from unpaired nuclei. While current results highlight the potential of ensemble distillation in multi-omic analyses, future work will focus on optimizing model complexity, dataset scalability, and exploring applications in diverse multi-omic contexts. ECLARE establishes a robust foundation for biologically informed single-cell data integration, facilitating advanced downstream analyses and scaling multi-omic data for training advanced machine learning models.
scGraphETM: Graph-Based Deep Learning Approach for Unraveling Cell Type-Specific Gene Regulatory Networks from Single-Cell Multi-Omics Data
Wenqi Dong
Manqi Zhou
Boyu Han
Yi Wang