Portrait de Yue Dong n'est pas disponible

Yue Dong

Alumni

Publications

Learning Multi-Task Communication with Message Passing for Sequence Learning
We present two architectures for multi-task learning with neural sequence models. Our approach allows the relationships between different ta… (voir plus)sks to be learned dynamically, rather than using an ad-hoc pre-defined structure as in previous work. We adopt the idea from message-passing graph neural networks, and propose a general graph multi-task learning framework in which different tasks can communicate with each other in an effective and interpretable way. We conduct extensive experiments in text classification and sequence labelling to evaluate our approach on multi-task learning and transfer learning. The empirical results show that our models not only outperform competitive baselines, but also learn interpretable and transferable patterns across tasks.
EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
Mehdi Rezagholizadeh
We present the first sentence simplification model that learns explicit edit operations (ADD, DELETE, and KEEP) via a neural programmer-inte… (voir plus)rpreter approach. Most current neural sentence simplification systems are variants of sequence-to-sequence models adopted from machine translation. These methods learn to simplify sentences as a byproduct of the fact that they are trained on complex-simple sentence pairs. By contrast, our neural programmer-interpreter is directly trained to predict explicit edit operations on targeted parts of the input sentence, resembling the way that humans perform simplification and revision. Our model outperforms previous state-of-the-art neural sentence simplification models (without external knowledge) by large margins on three benchmark text simplification corpora in terms of SARI (+0.95 WikiLarge, +1.89 WikiSmall, +1.41 Newsela), and is judged by humans to produce overall better and simpler output sentences.
Multi-task Learning over Graph Structures
We present two architectures for multi-task learning with neural sequence models. Our approach allows the relationships between different ta… (voir plus)sks to be learned dynamically, rather than using an ad-hoc pre-defined structure as in previous work. We adopt the idea from message-passing graph neural networks and propose a general \textbf{graph multi-task learning} framework in which different tasks can communicate with each other in an effective and interpretable way. We conduct extensive experiments in text classification and sequence labeling to evaluate our approach on multi-task learning and transfer learning. The empirical results show that our models not only outperform competitive baselines but also learn interpretable and transferable patterns across tasks.
BanditSum: Extractive Summarization as a Contextual Bandit
In this work, we propose a novel method for training neural networks to perform single-document extractive summarization without heuristical… (voir plus)ly-generated extractive labels. We call our approach BanditSum as it treats extractive summarization as a contextual bandit (CB) problem, where the model receives a document to summarize (the context), and chooses a sequence of sentences to include in the summary (the action). A policy gradient reinforcement learning algorithm is used to train the model to select sequences of sentences that maximize ROUGE score. We perform a series of experiments demonstrating that BanditSum is able to achieve ROUGE scores that are better than or comparable to the state-of-the-art for extractive summarization, and converges using significantly fewer update steps than competing approaches. In addition, we show empirically that BanditSum performs significantly better than competing approaches when good summary sentences appear late in the source document.
A Hierarchical Neural Attention-based Text Classifier
Deep neural networks have been displaying superior performance over traditional supervised classifiers in text classification. They learn to… (voir plus) extract useful features automatically when sufficient amount of data is presented. However, along with the growth in the number of documents comes the increase in the number of categories, which often results in poor performance of the multiclass classifiers. In this work, we use external knowledge in the form of topic category taxonomies to aide the classification by introducing a deep hierarchical neural attention-based classifier. Our model performs better than or comparable to state-of-the-art hierarchical models at significantly lower computational cost while maintaining high interpretability.