Portrait de Yikang Shen n'est pas disponible

Yikang Shen

Alumni

Publications

Investigating Biases in Textual Entailment Datasets
The ability to understand logical relationships between sentences is an important task in language understanding. To aid in progress for thi… (voir plus)s task, researchers have collected datasets for machine learning and evaluation of current systems. However, like in the crowdsourced Visual Question Answering (VQA) task, some biases in the data inevitably occur. In our experiments, we find that performing classification on just the hypotheses on the SNLI dataset yields an accuracy of 64%. We analyze the bias extent in the SNLI and the MultiNLI dataset, discuss its implication, and propose a simple method to reduce the biases in the datasets.
Ordered Memory
Stack-augmented recurrent neural networks (RNNs) have been of interest to the deep learning community for some time. However, the difficult… (voir plus)y of training memory models remains a problem obstructing the widespread use of such models. In this paper, we propose the Ordered Memory architecture. Inspired by Ordered Neurons (Shen et al., 2018), we introduce a new attention-based mechanism and use its cumulative probability to control the writing and erasing operation of the memory. We also introduce a new Gated Recursive Cell to compose lower-level representations into higher-level representation. We demonstrate that our model achieves strong performance on the logical inference task (Bowman et al., 2015) and the ListOps (Nangia and Bowman, 2018) task. We can also interpret the model to retrieve the induced tree structure, and find that these induced structures align with the ground truth. Finally, we evaluate our model on the Stanford Sentiment Treebank tasks (Socher et al., 2013), and find that it performs comparatively with the state-of-the-art methods in the literature.
Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks
Natural language is hierarchically structured: smaller units (e.g., phrases) are nested within larger units (e.g., clauses). When a larger c… (voir plus)onstituent ends, all of the smaller constituents that are nested within it must also be closed. While the standard LSTM architecture allows different neurons to track information at different time scales, it does not have an explicit bias towards modeling a hierarchy of constituents. This paper proposes to add such an inductive bias by ordering the neurons; a vector of master input and forget gates ensures that when a given neuron is updated, all the neurons that follow it in the ordering are also updated. Our novel recurrent architecture, ordered neurons LSTM (ON-LSTM), achieves good performance on four different tasks: language modeling, unsupervised parsing, targeted syntactic evaluation, and logical inference.
BanditSum: Extractive Summarization as a Contextual Bandit
In this work, we propose a novel method for training neural networks to perform single-document extractive summarization without heuristical… (voir plus)ly-generated extractive labels. We call our approach BanditSum as it treats extractive summarization as a contextual bandit (CB) problem, where the model receives a document to summarize (the context), and chooses a sequence of sentences to include in the summary (the action). A policy gradient reinforcement learning algorithm is used to train the model to select sequences of sentences that maximize ROUGE score. We perform a series of experiments demonstrating that BanditSum is able to achieve ROUGE scores that are better than or comparable to the state-of-the-art for extractive summarization, and converges using significantly fewer update steps than competing approaches. In addition, we show empirically that BanditSum performs significantly better than competing approaches when good summary sentences appear late in the source document.
Straight to the Tree: Constituency Parsing with Neural Syntactic Distance
In this work, we propose a novel constituency parsing scheme. The model first predicts a real-valued scalar, named syntactic distance, for e… (voir plus)ach split position in the sentence. The topology of grammar tree is then determined by the values of syntactic distances. Compared to traditional shift-reduce parsing schemes, our approach is free from the potentially disastrous compounding error. It is also easier to parallelize and much faster. Our model achieves the state-of-the-art single model F1 score of 92.1 on PTB and 86.4 on CTB dataset, which surpasses the previous single model results by a large margin.
Generating Contradictory, Neutral, and Entailing Sentences
Learning distributed sentence representations remains an interesting problem in the field of Natural Language Processing (NLP). We want to l… (voir plus)earn a model that approximates the conditional latent space over the representations of a logical antecedent of the given statement. In our paper, we propose an approach to generating sentences, conditioned on an input sentence and a logical inference label. We do this by modeling the different possibilities for the output sentence as a distribution over the latent representation, which we train using an adversarial objective. We evaluate the model using two state-of-the-art models for the Recognizing Textual Entailment (RTE) task, and measure the BLEU scores against the actual sentences as a probe for the diversity of sentences produced by our model. The experiment results show that, given our framework, we have clear ways to improve the quality and diversity of generated sentences.
Neural Language Modeling by Jointly Learning Syntax and Lexicon
We propose a neural language model capable of unsupervised syntactic structure induction. The model leverages the structure information to f… (voir plus)orm better semantic representations and better language modeling. Standard recurrent neural networks are limited by their structure and fail to efficiently use syntactic information. On the other hand, tree-structured recursive networks usually require additional structural supervision at the cost of human expert annotation. In this paper, We propose a novel neural language model, called the Parsing-Reading-Predict Networks (PRPN), that can simultaneously induce the syntactic structure from unannotated sentences and leverage the inferred structure to learn a better language model. In our model, the gradient can be directly back-propagated from the language model loss into the neural parsing network. Experiments show that the proposed model can discover the underlying syntactic structure and achieve state-of-the-art performance on word/character-level language model tasks.
Self-organized Hierarchical Softmax
We propose a new self-organizing hierarchical softmax formulation for neural-network-based language models over large vocabularies. Instead … (voir plus)of using a predefined hierarchical structure, our approach is capable of learning word clusters with clear syntactical and semantic meaning during the language model training process. We provide experiments on standard benchmarks for language modeling and sentence compression tasks. We find that this approach is as fast as other efficient softmax approximations, while achieving comparable or even better performance relative to similar full softmax models.