Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Language models (LMs) may appear insensitive to word order changes in natural language understanding (NLU) tasks. In this paper, we propose … (voir plus)that linguistic redundancy can explain this phenomenon, whereby word order and other linguistic cues such as case markers provide overlapping and thus redundant information. Our hypothesis is that models exhibit insensitivity to word order when the order provides redundant information, and the degree of insensitivity varies across tasks. We quantify how informative word order is using mutual information (MI) between unscrambled and scrambled sentences. Our results show the effect that the less informative word order is, the more consistent the model's predictions are between unscrambled and scrambled sentences. We also find that the effect varies across tasks: for some tasks, like SST-2, LMs' prediction is almost always consistent with the original one even if the Pointwise-MI (PMI) changes, while for others, like RTE, the consistency is near random when the PMI gets lower, i.e., word order is really important.