Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Waïss Azizian
Alumni
Publications
Linear Lower Bounds and Conditioning of Differentiable Games
Recent successes of game-theoretic formulations in ML have caused a resurgence of research interest in differentiable games. Overwhelmingly,… (voir plus) that research focuses on methods and upper bounds on their speed of convergence. In this work, we approach the question of fundamental iteration complexity by providing lower bounds to complement the linear (i.e. geometric) upper bounds observed in the literature on a wide class of problems. We cast saddle-point and min-max problems as 2-player games. We leverage tools from single-objective convex optimisation to propose new linear lower bounds for convex-concave games. Notably, we give a linear lower bound for
2020-11-21
Proceedings of the 37th International Conference on Machine Learning (publié)
We use matrix iteration theory to characterize acceleration in smooth games. We define the spectral shape of a family of games as the set co… (voir plus)ntaining all eigenvalues of the Jacobians of standard gradient dynamics in the family. Shapes restricted to the real line represent well-understood classes of problems, like minimization. Shapes spanning the complex plane capture the added numerical challenges in solving smooth games. In this framework, we describe gradient-based methods, such as extragradient, as transformations on the spectral shape. Using this perspective, we propose an optimal algorithm for bilinear games. For smooth and strongly monotone operators, we identify a continuum between convex minimization, where acceleration is possible using Polyak's momentum, and the worst case where gradient descent is optimal. Finally, going beyond first-order methods, we propose an accelerated version of consensus optimization.
We consider differentiable games where the goal is to find a Nash equilibrium. The machine learning community has recently started using v… (voir plus)ariants of the gradient method ( GD ). Prime examples are extragradient ( EG ), the optimistic gradient method ( OG ) and consensus optimization ( CO ), which enjoy linear convergence in cases like bilinear games, where the standard GD fails. The full bene-fits of theses relatively new methods are not known as there is no unified analysis for both strongly monotone and bilinear games. We provide new analyses of the EG ’s local and global convergence properties and use is to get a tighter global convergence rate for OG and CO . Our analysis covers the whole range of settings between bilinear and strongly monotone games. It reveals that these methods converges via different mechanisms at these extremes; in between, it exploits the most favorable mechanism for the given problem. We then prove that EG achieves the optimal rate for a wide class of algorithms with any number of extrapolations. Our tight analysis of EG ’s convergence rate in games shows that, unlike in convex minimization, EG may be much faster than GD .
2020-01-01
International Conference on Artificial Intelligence and Statistics (published)