Portrait de Tegan Maharaj n'est pas disponible

Tegan Maharaj

Alumni

Publications

Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (voir 5 de plus)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Preparation requires technical research and development, as well as adaptive, proactive governance Artificial intelligence (AI) is progressi… (voir plus)ng rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals. Increases in capabilities and autonomy may soon massively amplify AI’s impact, with risks that include large-scale social harms, malicious uses, and an irreversible loss of human control over autonomous AI systems. Although researchers have warned of extreme risks from AI (1), there is a lack of consensus about how to manage them. Society’s response, despite promising first steps, is incommensurate with the possibility of rapid, transformative progress that is expected by many experts. AI safety research is lagging. Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness and barely address autonomous systems. Drawing on lessons learned from other safety-critical technologies, we outline a comprehensive plan that combines technical research and development (R&D) with proactive, adaptive governance mechanisms for a more commensurate preparation.
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (voir 5 de plus)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Preparation requires technical research and development, as well as adaptive, proactive governance Artificial intelligence (AI) is progressi… (voir plus)ng rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals. Increases in capabilities and autonomy may soon massively amplify AI’s impact, with risks that include large-scale social harms, malicious uses, and an irreversible loss of human control over autonomous AI systems. Although researchers have warned of extreme risks from AI (1), there is a lack of consensus about how to manage them. Society’s response, despite promising first steps, is incommensurate with the possibility of rapid, transformative progress that is expected by many experts. AI safety research is lagging. Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness and barely address autonomous systems. Drawing on lessons learned from other safety-critical technologies, we outline a comprehensive plan that combines technical research and development (R&D) with proactive, adaptive governance mechanisms for a more commensurate preparation.
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (voir 5 de plus)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Preparation requires technical research and development, as well as adaptive, proactive governance Artificial intelligence (AI) is progressi… (voir plus)ng rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals. Increases in capabilities and autonomy may soon massively amplify AI’s impact, with risks that include large-scale social harms, malicious uses, and an irreversible loss of human control over autonomous AI systems. Although researchers have warned of extreme risks from AI (1), there is a lack of consensus about how to manage them. Society’s response, despite promising first steps, is incommensurate with the possibility of rapid, transformative progress that is expected by many experts. AI safety research is lagging. Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness and barely address autonomous systems. Drawing on lessons learned from other safety-critical technologies, we outline a comprehensive plan that combines technical research and development (R&D) with proactive, adaptive governance mechanisms for a more commensurate preparation.
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (voir 5 de plus)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (voir 5 de plus)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Preparation requires technical research and development, as well as adaptive, proactive governance Artificial intelligence (AI) is progressi… (voir plus)ng rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals. Increases in capabilities and autonomy may soon massively amplify AI’s impact, with risks that include large-scale social harms, malicious uses, and an irreversible loss of human control over autonomous AI systems. Although researchers have warned of extreme risks from AI (1), there is a lack of consensus about how to manage them. Society’s response, despite promising first steps, is incommensurate with the possibility of rapid, transformative progress that is expected by many experts. AI safety research is lagging. Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness and barely address autonomous systems. Drawing on lessons learned from other safety-critical technologies, we outline a comprehensive plan that combines technical research and development (R&D) with proactive, adaptive governance mechanisms for a more commensurate preparation.
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (voir 5 de plus)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Managing extreme AI risks amid rapid progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Trevor Darrell
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (voir 5 de plus)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Preparation requires technical research and development, as well as adaptive, proactive governance Artificial intelligence (AI) is progressi… (voir plus)ng rapidly, and companies are shifting their focus to developing generalist AI systems that can autonomously act and pursue goals. Increases in capabilities and autonomy may soon massively amplify AI’s impact, with risks that include large-scale social harms, malicious uses, and an irreversible loss of human control over autonomous AI systems. Although researchers have warned of extreme risks from AI (1), there is a lack of consensus about how to manage them. Society’s response, despite promising first steps, is incommensurate with the possibility of rapid, transformative progress that is expected by many experts. AI safety research is lagging. Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness and barely address autonomous systems. Drawing on lessons learned from other safety-critical technologies, we outline a comprehensive plan that combines technical research and development (R&D) with proactive, adaptive governance mechanisms for a more commensurate preparation.
Managing AI Risks in an Era of Rapid Progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan
Philip Torr … (voir 4 de plus)
Stuart Russell
Daniel Kahneman
Jan Brauner
In this short consensus paper, we outline risks from upcoming, advanced AI systems. We examine large-scale social harms and malicious uses, … (voir plus)as well as an irreversible loss of human control over autonomous AI systems. In light of rapid and continuing AI progress, we propose priorities for AI R&D and governance.
Managing AI Risks in an Era of Rapid Progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Yuval Noah Harari
Trevor Darrell
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (voir 5 de plus)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Managing AI Risks in an Era of Rapid Progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan
Philip Torr … (voir 4 de plus)
Stuart Russell
Daniel Kahneman
Jan Brauner
In this short consensus paper, we outline risks from upcoming, advanced AI systems. We examine large-scale social harms and malicious uses, … (voir plus)as well as an irreversible loss of human control over autonomous AI systems. In light of rapid and continuing AI progress, we propose priorities for AI R&D and governance.
Managing AI Risks in an Era of Rapid Progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Yuval Noah Harari
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan
Philip Torr … (voir 4 de plus)
Stuart Russell
Daniel Kahneman
Jan Brauner
In this short consensus paper, we outline risks from upcoming, advanced AI systems. We examine large-scale social harms and malicious uses, … (voir plus)as well as an irreversible loss of human control over autonomous AI systems. In light of rapid and continuing AI progress, we propose priorities for AI R&D and governance.
Harms from Increasingly Agentic Algorithmic Systems
Alva Markelius
Chris Pang
Dmitrii Krasheninnikov
Lauro Langosco
Zhonghao He
Yawen Duan
Micah Carroll
Alex Mayhew
Katherine Collins
John Burden
Wanru Zhao
Konstantinos Voudouris
Umang Bhatt
Adrian Weller … (voir 2 de plus)
Research in Fairness, Accountability, Transparency, and Ethics (FATE)1 has established many sources and forms of algorithmic harm, in domain… (voir plus)s as diverse as health care, finance, policing, and recommendations. Much work remains to be done to mitigate the serious harms of these systems, particularly those disproportionately affecting marginalized communities. Despite these ongoing harms, new systems are being developed and deployed, typically without strong regulatory barriers, threatening the perpetuation of the same harms and the creation of novel ones. In response, the FATE community has emphasized the importance of anticipating harms, rather than just responding to them. Anticipation of harms is especially important given the rapid pace of developments in machine learning (ML). Our work focuses on the anticipation of harms from increasingly agentic systems. Rather than providing a definition of agency as a binary property, we identify 4 key characteristics which, particularly in combination, tend to increase the agency of a given algorithmic system: underspecification, directness of impact, goal-directedness, and long-term planning. We also discuss important harms which arise from increasing agency – notably, these include systemic and/or long-range impacts, often on marginalized or unconsidered stakeholders. We emphasize that recognizing agency of algorithmic systems does not absolve or shift the human responsibility for algorithmic harms. Rather, we use the term agency to highlight the increasingly evident fact that ML systems are not fully under human control. Our work explores increasingly agentic algorithmic systems in three parts. First, we explain the notion of an increase in agency for algorithmic systems in the context of diverse perspectives on agency across disciplines. Second, we argue for the need to anticipate harms from increasingly agentic systems. Third, we discuss important harms from increasingly agentic systems and ways forward for addressing them. We conclude by reflecting on implications of our work for anticipating algorithmic harms from emerging systems.