Portrait de (Rex) Devon Hjelm

(Rex) Devon Hjelm

Membre affilié
Chercheur scientifique, Apple MLR
Sujets de recherche
Apprentissage de représentations
Apprentissage en ligne
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Raisonnement
Théorie de l'information

Étudiants actuels

Doctorat - UdeM
Co-superviseur⋅e :

Publications

Leveraging exploration in off-policy algorithms via normalizing flows
Exploration is a crucial component for discovering approximately optimal policies in most high-dimensional reinforcement learning (RL) setti… (voir plus)ngs with sparse rewards. Approaches such as neural density models and continuous exploration (e.g., Go-Explore) have been instrumental in recent advances. Soft actor-critic (SAC) is a method for improving exploration that aims to combine off-policy updates while maximizing the policy entropy. We extend SAC to a richer class of probability distributions through normalizing flows, which we show improves performance in exploration, sample complexity, and convergence. Finally, we show that not only the normalizing flow policy outperforms SAC on MuJoCo domains, it is also significantly lighter, using as low as 5.6% of the original network's parameters for similar performance.
Tell, Draw, and Repeat: Generating and Modifying Images Based on Continual Linguistic Instruction
Alaaeldin El-Nouby
Shikhar Sharma
Hannes Schulz
Layla El Asri
Graham W. Taylor
Conditional text-to-image generation is an active area of research, with many possible applications. Existing research has primarily focused… (voir plus) on generating a single image from available conditioning information in one step. One practical extension beyond one-step generation is a system that generates an image iteratively, conditioned on ongoing linguistic input or feedback. This is significantly more challenging than one-step generation tasks, as such a system must understand the contents of its generated images with respect to the feedback history, the current feedback, as well as the interactions among concepts present in the feedback history. In this work, we present a recurrent image generation model which takes into account both the generated output up to the current step as well as all past instructions for generation. We show that our model is able to generate the background, add new objects, and apply simple transformations to existing objects. We believe our approach is an important step toward interactive generation. Code and data is available at: https://www.microsoft.com/en-us/research/project/generative-neural-visual-artist-geneva/.
Attraction-Repulsion Actor-Critic for Continuous Control Reinforcement Learning
Continuous control tasks in reinforcement learning are important because they provide an important framework for learning in high-dimensiona… (voir plus)l state spaces with deceptive rewards, where the agent can easily become trapped into suboptimal solutions. One way to avoid local optima is to use a population of agents to ensure coverage of the policy space, yet learning a population with the "best" coverage is still an open problem. In this work, we present a novel approach to population-based RL in continuous control that leverages properties of normalizing flows to perform attractive and repulsive operations between current members of the population and previously observed policies. Empirical results on the MuJoCo suite demonstrate a high performance gain for our algorithm compared to prior work, including Soft-Actor Critic (SAC).
Online Adaptative Curriculum Learning for GANs
Thang Doan
Joao Monteiro
Isabela Albuquerque
Generative Adversarial Networks (GANs) can successfully approximate a probability distribution and produce realistic samples. However, open … (voir plus)questions such as sufficient convergence conditions and mode collapse still persist. In this paper, we build on existing work in the area by proposing a novel framework for training the generator against an ensemble of discriminator networks, which can be seen as a one-student/multiple-teachers setting. We formalize this problem within the full-information adversarial bandit framework, where we evaluate the capability of an algorithm to select mixtures of discriminators for providing the generator with feedback during learning. To this end, we propose a reward function which reflects the progress made by the generator and dynamically update the mixture weights allocated to each discriminator. We also draw connections between our algorithm and stochastic optimization methods and then show that existing approaches using multiple discriminators in literature can be recovered from our framework. We argue that less expressive discriminators are smoother and have a general coarse grained view of the modes map, which enforces the generator to cover a wide portion of the data distribution support. On the other hand, highly expressive discriminators ensure samples quality. Finally, experimental results show that our approach improves samples quality and diversity over existing baselines by effectively learning a curriculum. These results also support the claim that weaker discriminators have higher entropy improving modes coverage.