Hackathon | Créer une IA plus sécuritaire pour la santé mentale des jeunes
Du 16 au 23 mars 2026, rejoignez une communauté dynamique dédiée à exploiter la puissance de l'IA pour créer des solutions favorisant le bien-être mental des jeunes.
Apprenez à tirer parti de l’IA générative pour soutenir et améliorer votre productivité au travail. La prochaine cohorte se déroulera en ligne les 24 et 26 février 2026, en anglais.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Offline reinforcement learning has gained a lot of popularity for its potential to solve industry challenges. However, real-world environmen… (voir plus)ts are often highly stochastic and partially observable, leading long-term planners to overfit to offline data in model-based settings. Input-driven Markov Decision Processes (IDMDPs) offer a way to work with some of the uncertainty by letting designers separate what the agent has control over (states) from what it cannot (inputs) in the environnement. These stochastic external inputs are often difficult to model. Under the assumption that the input model will be imperfect, we investigate the bias-variance tradeoff under shallow planning in IDMDPs. Paving the way to input-driven planning horizons, we also investigate the similarity of optimal planning horizons at different inputs given the structure of the input space.
Offline reinforcement learning has gained a lot of popularity for its potential to solve industry challenges. However, real-world environmen… (voir plus)ts are often highly stochastic and partially observable, leading long-term planners to overfit to offline data in model-based settings. Input-driven Markov Decision Processes (IDMDPs) offer a way to work with some of the uncertainty by letting designers separate what the agent has control over (states) from what it cannot (inputs) in the environnement. These stochastic external inputs are often difficult to model. Under the assumption that the input model will be imperfect, we investigate the bias-variance tradeoff under shallow planning in IDMDPs. Paving the way to input-driven planning horizons, we also investigate the similarity of optimal planning horizons at different inputs given the structure of the input space.