A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Offline reinforcement learning has gained a lot of popularity for its potential to solve industry challenges. However, real-world environmen… (see more)ts are often highly stochastic and partially observable, leading long-term planners to overfit to offline data in model-based settings. Input-driven Markov Decision Processes (IDMDPs) offer a way to work with some of the uncertainty by letting designers separate what the agent has control over (states) from what it cannot (inputs) in the environnement. These stochastic external inputs are often difficult to model. Under the assumption that the input model will be imperfect, we investigate the bias-variance tradeoff under shallow planning in IDMDPs. Paving the way to input-driven planning horizons, we also investigate the similarity of optimal planning horizons at different inputs given the structure of the input space.
Offline reinforcement learning has gained a lot of popularity for its potential to solve industry challenges. However, real-world environmen… (see more)ts are often highly stochastic and partially observable, leading long-term planners to overfit to offline data in model-based settings. Input-driven Markov Decision Processes (IDMDPs) offer a way to work with some of the uncertainty by letting designers separate what the agent has control over (states) from what it cannot (inputs) in the environnement. These stochastic external inputs are often difficult to model. Under the assumption that the input model will be imperfect, we investigate the bias-variance tradeoff under shallow planning in IDMDPs. Paving the way to input-driven planning horizons, we also investigate the similarity of optimal planning horizons at different inputs given the structure of the input space.