Portrait de Pascal Germain

Pascal Germain

Membre académique associé
Professeur adjoint, Université Laval, Département d'informatique et de génie logiciel
Sujets de recherche
Apprentissage de représentations
Théorie de l'apprentissage automatique

Biographie

Pascal Germain est professeur adjoint au Département d’informatique et de génie logiciel de l’Université Laval et chercheur en apprentissage automatique. Il a obtenu un doctorat en informatique de l'Université Laval en 2015, sous la direction de François Laviolette et de Mario Marchand. Il a ensuite poursuivi ses travaux de recherche en France pendant quatre ans au sein de l’Institut national de recherche en sciences et technologies du numérique (Inria), d'abord comme postdoctorant dans l'équipe du projet SIERRA de Francis Bach, puis comme chargé de recherche et membre de l'équipe du projet MODAL. Il a aussi été membre affilié et enseignant au Département de mathématiques de l'Université de Lille. De retour à son alma mater en tant que professeur adjoint depuis 2019, il y est membre du Centre de recherche en données massives (CRDM) et de l'Institut intelligence et données (IID). Il est également membre académique associé de Mila – Institut québécois d’intelligence artificielle. Ses domaines de recherche comprennent la théorie statistique de l’apprentissage automatique, l'apprentissage par transfert et l'apprentissage de prédicteurs interprétables.

Étudiants actuels

Doctorat - Université Laval
Doctorat - Université Laval

Publications

PAC-Bayesian Generalization Bounds for Adversarial Generative Models
Sokhna Diarra Mbacke
Florence Clerc
We extend PAC-Bayesian theory to generative models and develop generalization bounds for models based on the Wasserstein distance and the to… (voir plus)tal variation distance. Our first result on the Wasserstein distance assumes the instance space is bounded, while our second result takes advantage of dimensionality reduction. Our results naturally apply to Wasserstein GANs and Energy-Based GANs, and our bounds provide new training objectives for these two. Although our work is mainly theoretical, we perform numerical experiments showing non-vacuous generalization bounds for Wasserstein GANs on synthetic datasets.
Sample Boosting Algorithm (SamBA) - An interpretable greedy ensemble classifier based on local expertise for fat data
Baptiste Bauvin
Cécile Capponi
Florence Clerc
Sokol Koço
Interpretable domain adaptation using unsupervised feature selection on pre-trained source models
Luxin Zhang
Yacine Kessaci
C. Biernacki