Hackathon | Créer une IA plus sécuritaire pour la santé mentale des jeunes
Du 16 au 23 mars 2026, rejoignez une communauté dynamique dédiée à exploiter la puissance de l'IA pour créer des solutions favorisant le bien-être mental des jeunes.
Apprenez à tirer parti de l’IA générative pour soutenir et améliorer votre productivité au travail. La prochaine cohorte se déroulera en ligne les 24 et 26 février 2026, en anglais.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Olivier Gouvert
Alumni
Publications
TEARS: Text Representations for Scrutable Recommendations
Traditional recommender systems rely on high-dimensional (latent)
embeddings for modeling user-item interactions, often resulting in
opaque … (voir plus)representations that lack interpretability. Moreover, these
systems offer limited control to users over their recommendations.
Inspired by recent work, we introduce TExtuAl Representations for
Scrutable recommendations (TEARS) to address these challenges.
Instead of representing a user’s interests through latent embed-
dings, TEARS encodes them in natural text, providing transparency
and allowing users to edit them. To encode such preferences, we
use modern LLMs to generate high-quality user summaries which
we find uniquely capture user preferences. Using these summaries
we take a hybrid approach where we use an optimal transport
procedure to align the summaries’ representations with the repre-
sentation of a standard VAE for collaborative filtering. We find this
approach can surpass the performance of the three popular VAE
models while providing user-controllable recommendations. We
further analyze the controllability of TEARS through three simu-
lated user tasks to evaluate the effectiveness of user edits on their
summaries. Our code and all user-summaries can be seen in an
anonymized repository.