Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Apprenez à tirer parti de l’IA générative pour soutenir et améliorer votre productivité au travail. La prochaine cohorte se déroulera en ligne les 26 et 28 août 2025.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Reinforcement learning is a powerful technique for developing new robot behaviors. However, typical lack of safety guarantees constitutes a … (voir plus)hurdle for its practical application on real robots. To address this issue, safe reinforcement learning aims to incorporate safety considerations, enabling faster transfer to real robots and facilitating lifelong learning. One promising approach within safe reinforcement learning is the use of control barrier functions. These functions provide a framework to ensure that the system remains in a safe state during the learning process. However, synthesizing control barrier functions is not straightforward and often requires ample domain knowledge. This challenge motivates the exploration of data-driven methods for automatically defining control barrier functions, which is highly appealing. We conduct a comprehensive review of the existing literature on safe reinforcement learning using control barrier functions. Additionally, we investigate various techniques for automatically learning the Control Barrier Functions, aiming to enhance the safety and efficacy of Reinforcement Learning in practical robot applications.