Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Leo Schwinn
Visiteur de recherche indépendant - Technical Univeristy of Munich
A significant challenge in maintaining real-world machine learning models is responding to the continuous and unpredictable evolution of dat… (voir plus)a. Most practitioners are faced with the difficult question: when should I retrain or update my machine learning model? This seemingly straightforward problem is particularly challenging for three reasons: 1) decisions must be made based on very limited information - we usually have access to only a few examples, 2) the nature, extent, and impact of the distribution shift are unknown, and 3) it involves specifying a cost ratio between retraining and poor performance, which can be hard to characterize. Existing works address certain aspects of this problem, but none offer a comprehensive solution. Distribution shift detection falls short as it cannot account for the cost trade-off; the scarcity of the data, paired with its unusual structure, makes it a poor fit for existing offline reinforcement learning methods, and the online learning formulation overlooks key practical considerations. To address this, we present a principled formulation of the retraining problem and propose an uncertainty-based method that makes decisions by continually forecasting the evolution of model performance evaluated with a bounded metric. Our experiments, addressing classification tasks, show that the method consistently outperforms existing baselines on 7 datasets. We thoroughly assess its robustness to varying cost trade-off values and mis-specified cost trade-offs.
2025-10-06
Proceedings of the 42nd International Conference on Machine Learning (publié)
A significant challenge in maintaining real-world machine learning models is responding to the continuous and unpredictable evolution of dat… (voir plus)a. Most practitioners are faced with the difficult question: when should I retrain or update my machine learning model? This seemingly straightforward problem is particularly challenging for three reasons: 1) decisions must be made based on very limited information - we usually have access to only a few examples, 2) the nature, extent, and impact of the distribution shift are unknown, and 3) it involves specifying a cost ratio between retraining and poor performance, which can be hard to characterize. Existing works address certain aspects of this problem, but none offer a comprehensive solution. Distribution shift detection falls short as it cannot account for the cost trade-off; the scarcity of the data, paired with its unusual structure, makes it a poor fit for existing offline reinforcement learning methods, and the online learning formulation overlooks key practical considerations. To address this, we present a principled formulation of the retraining problem and propose an uncertainty-based method that makes decisions by continually forecasting the evolution of model performance evaluated with a bounded metric. Our experiments, addressing classification tasks, show that the method consistently outperforms existing baselines on 7 datasets. We thoroughly assess its robustness to varying cost trade-off values and mis-specified cost trade-offs.
2025-10-06
Proceedings of the 42nd International Conference on Machine Learning (publié)
Most safety training methods for large language models (LLMs) are based on fine-tuning that forces models to shift from an unsafe answer to … (voir plus)refusal when faced with harmful requests. Unfortunately, these drastic distribution shifts generally compromise model capabilities. To avoid that, we propose to expand the model's vocabulary with a special token we call *red flag token* (
Most safety training methods for large-language models (LLMs) based on fine-tuning rely on dramatically changing the output distribution of … (voir plus)the model when faced with a harmful request, shifting it from an unsafe answer to a refusal to respond.
These methods inherently compromise model capabilities and might make auto-regressive models vulnerable to attacks that make likely an initial token of affirmative response.
To avoid that, we propose to expand the model's vocabulary with a special token we call a *red flag token* (
In this paper, we argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of… (voir plus) noise, such as small datasets, methodological inconsistencies, and unreliable evaluation setups. This can, at times, make it impossible to evaluate and compare attacks and defenses fairly, thereby slowing progress. We systematically analyze the LLM safety evaluation pipeline, covering dataset curation, optimization strategies for automated red-teaming, response generation, and response evaluation using LLM judges. At each stage, we identify key issues and highlight their practical impact. We also propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers. Lastly, we offer an opposing perspective, highlighting practical reasons for existing limitations. We believe that addressing the outlined problems in future research will improve the field's ability to generate easily comparable results and make measurable progress.
In this paper, we argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of… (voir plus) noise, such as small datasets, methodological inconsistencies, and unreliable evaluation setups. This can, at times, make it impossible to evaluate and compare attacks and defenses fairly, thereby slowing progress. We systematically analyze the LLM safety evaluation pipeline, covering dataset curation, optimization strategies for automated red-teaming, response generation, and response evaluation using LLM judges. At each stage, we identify key issues and highlight their practical impact. We also propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers. Lastly, we offer an opposing perspective, highlighting practical reasons for existing limitations. We believe that addressing the outlined problems in future research will improve the field's ability to generate easily comparable results and make measurable progress.
Most safety training methods for large language models (LLMs) based on fine-tuning rely on dramatically changing the output distribution of … (voir plus)the model when faced with a harmful request, shifting it from an unsafe answer to a refusal to respond. These methods inherently compromise model capabilities and might make auto-regressive models vulnerable to attacks that make likely an initial token of affirmative response. To avoid that, we propose to expand the model's vocabulary with a special token we call red flag token () and propose to fine-tune the model to generate this token at any time harmful content is generated or about to be generated. This novel safety training method effectively augments LLMs into generative classifiers of harmfulness at all times during the conversation. This method offers several advantages: it enables the model to explicitly learn the concept of harmfulness while marginally affecting the generated distribution, thus maintaining the model's utility. It also evaluates each generated answer rather than just the input prompt and provides a stronger defence against sampling-based attacks. In addition, it simplifies the evaluation of the model's robustness and reduces correlated failures when combined with a classifier. We further show an increased robustness to long contexts, and supervised fine-tuning attacks.
Misaligned research objectives have considerably hindered progress in adversarial robustness research over the past decade. For instance, an… (voir plus) extensive focus on optimizing target metrics, while neglecting rigorous standardized evaluation, has led researchers to pursue ad-hoc heuristic defenses that were seemingly effective. Yet, most of these were exposed as flawed by subsequent evaluations, ultimately contributing little measurable progress to the field. In this position paper, we illustrate that current research on the robustness of large language models (LLMs) risks repeating past patterns with potentially worsened real-world implications. To address this, we argue that realigned objectives are necessary for meaningful progress in adversarial alignment. To this end, we build on established cybersecurity taxonomy to formally define differences between past and emerging threat models that apply to LLMs. Using this framework, we illustrate that progress requires disentangling adversarial alignment into addressable sub-problems and returning to core academic principles, such as measureability, reproducibility, and comparability. Although the field presents significant challenges, the fresh start on adversarial robustness offers the unique opportunity to build on past experience while avoiding previous mistakes.