Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (voir plus)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (voir plus)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (voir plus)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (voir plus)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (voir plus)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (voir plus)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The introduction of Transformers in 2017 reshaped the landscape of deep learning. Originally proposed for sequence modelling, Transformers h… (voir plus)ave since achieved widespread success across various domains. However, the scalability limitations of Transformers - particularly with respect to sequence length - have sparked renewed interest in novel recurrent models that are parallelizable during training, offer comparable performance, and scale more effectively. In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs), which dominated the field for two decades before the rise of Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during training, and (3) achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
The advent of Transformers marked a significant breakthrough in sequence modelling, providing a highly performant architecture capable of le… (voir plus)veraging GPU parallelism. However, Transformers are computationally expensive at inference time, limiting their applications, particularly in low-resource settings (e.g., mobile and embedded devices). Addressing this, we (1) begin by showing that attention can be viewed as a special Recurrent Neural Network (RNN) with the ability to compute its \textit{many-to-one} RNN output efficiently. We then (2) show that popular attention-based models such as Transformers can be viewed as RNN variants. However, unlike traditional RNNs (e.g., LSTMs), these models cannot be updated efficiently with new tokens, an important property in sequence modelling. Tackling this, we (3) introduce a new efficient method of computing attention's \textit{many-to-many} RNN output based on the parallel prefix scan algorithm. Building on the new attention formulation, we (4) introduce \textbf{Aaren}, an attention-based module that can not only (i) be trained in parallel (like Transformers) but also (ii) be updated efficiently with new tokens, requiring only constant memory for inferences (like traditional RNNs). Empirically, we show Aarens achieve comparable performance to Transformers on
The advent of Transformers marked a significant breakthrough in sequence modelling, providing a highly performant architecture capable of le… (voir plus)veraging GPU parallelism. However, Transformers are computationally expensive at inference time, limiting their applications, particularly in low-resource settings (e.g., mobile and embedded devices). Addressing this, we (1) begin by showing that attention can be viewed as a special Recurrent Neural Network (RNN) with the ability to compute its \textit{many-to-one} RNN output efficiently. We then (2) show that popular attention-based models such as Transformers can be viewed as RNN variants. However, unlike traditional RNNs (e.g., LSTMs), these models cannot be updated efficiently with new tokens, an important property in sequence modelling. Tackling this, we (3) introduce a new efficient method of computing attention's \textit{many-to-many} RNN output based on the parallel prefix scan algorithm. Building on the new attention formulation, we (4) introduce \textbf{Aaren}, an attention-based module that can not only (i) be trained in parallel (like Transformers) but also (ii) be updated efficiently with new tokens, requiring only constant memory for inferences (like traditional RNNs). Empirically, we show Aarens achieve comparable performance to Transformers on