Portrait de Justin Szeto n'est pas disponible

Justin Szeto

Maîtrise recherche - McGill
Superviseur⋅e principal⋅e
Sujets de recherche
Apprentissage automatique médical
Apprentissage profond
Vision par ordinateur

Publications

Mitigating Calibration Bias Without Fixed Attribute Grouping for Improved Fairness in Medical Imaging Analysis
Changjian Shui
Raghav Mehta
Douglas Arnold
Rethinking Generalization: The Impact of Annotation Style on Medical Image Segmentation
Jillian L. Cardinell
Raghav Mehta
Jean-Pierre R. Falet
Douglas Arnold
Sotirios A. Tsaftaris
Generalization is an important attribute of machine learning models, particularly for those that are to be deployed in a medical context, wh… (voir plus)ere unreliable predictions can have real world consequences. While the failure of models to generalize across datasets is typically attributed to a mismatch in the data distributions, performance gaps are often a consequence of biases in the "ground-truth" label annotations. This is particularly important in the context of medical image segmentation of pathological structures (e.g. lesions), where the annotation process is much more subjective, and affected by a number underlying factors, including the annotation protocol, rater education/experience, and clinical aims, among others. In this paper, we show that modeling annotation biases, rather than ignoring them, poses a promising way of accounting for differences in annotation style across datasets. To this end, we propose a generalized conditioning framework to (1) learn and account for different annotation styles across multiple datasets using a single model, (2) identify similar annotation styles across different datasets in order to permit their effective aggregation, and (3) fine-tune a fully trained model to a new annotation style with just a few samples. Next, we present an image-conditioning approach to model annotation styles that correlate with specific image features, potentially enabling detection biases to be more easily identified.
Cohort Bias Adaptation in Aggregated Datasets for Lesion Segmentation
Jillian L. Cardinell
Raghav Mehta
Sotirios A. Tsaftaris
Douglas Arnold
Optimizing Operating Points for High Performance Lesion Detection and Segmentation Using Lesion Size Reweighting
There are many clinical contexts which require accurate detection and segmentation of all focal pathologies (e.g. lesions, tumours) in patie… (voir plus)nt images. In cases where there are a mix of small and large lesions, standard binary cross entropy loss will result in better segmentation of large lesions at the expense of missing small ones. Adjusting the operating point to accurately detect all lesions generally leads to oversegmentation of large lesions. In this work, we propose a novel reweighing strategy to eliminate this performance gap, increasing small pathology detection performance while maintaining segmentation accuracy. We show that our reweighing strategy vastly outperforms competing strategies based on experiments on a large scale, multi-scanner, multi-center dataset of Multiple Sclerosis patient images.
Accounting for Variance in Machine Learning Benchmarks
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the l… (voir plus)earning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusions. We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyperparameter choice impact markedly the results. We analyze the predominant comparison methods used today in the light of this variance. We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost. Building on these results, we study the error rate of detecting improvements, on five different deep-learning tasks/architectures. This study leads us to propose recommendations for performance comparisons.