Portrait de Jun Ding

Jun Ding

Membre affilié
Professeur adjoint, McGill University, Département de médecine
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Biologie computationnelle

Biographie

Jun Ding est professeur adjoint au Département de médecine de la Faculté de médecine et des sciences de la santé de l'Université McGill. Aux côtés de son équipe, il se consacre à l'utilisation de techniques d'apprentissage automatique pour éclaircir les dynamiques complexes des cellules dans diverses maladies, telles que les troubles du développement, les maladies pulmonaires et les cancers. La nature diversifiée et complexe de ces affections nécessite l’usage d’approches innovantes, incitant à l'utilisation de technologies unicellulaires de pointe. Ces technologies offrent des possibilités sans précédent pour faire avancer la compréhension, notamment dans des domaines tels que la biologie du développement et du cancer. Cependant, elles posent également des défis dans le développement de modèles informatiques capables de relier ces données biomédicales complexes à des découvertes potentielles.

Jun Ding a comme objectif le développement et l'affinement des méthodologies d'apprentissage automatique, en particulier des modèles graphiques probabilistes, pour analyser, modéliser et visualiser efficacement des données omiques à la fois de cellules uniques et de cellules groupées, souvent avec des dimensions longitudinales ou spatiales. Le but de ses recherches est d'utiliser ces techniques avancées d'apprentissage automatique pour approfondir la compréhension des dynamiques cellulaires, afin de développer des stratégies diagnostiques et thérapeutiques novatrices susceptibles de bénéficier considérablement à la santé publique.

Étudiants actuels

Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :

Publications

Alveolar epithelial cell plasticity and injury memory in human pulmonary fibrosis
Taylor S Adams
Jonas C Schupp
Agshin Balayev
Johad Khoury
Aurelien Justet
Fadi Nikola
De Sadeleer J Laurens
Juan Cala Garcia
Marta Zapata-Ortega
Benos V Panayiotis
P.V. Benos
John E McDonough
Farida Ahangari
Melanie Koenigshoff
Robert J Homer
Ivan O Rosas
Xiting Yan
Bart M Vanaudenaerde
Wim A Wuyts … (voir 1 de plus)
Naftali Kaminski
A deep generative model for deciphering cellular dynamics and in silico drug discovery in complex diseases.
Yumin Zheng
Jonas C Schupp
Taylor S Adams
Geremy Clair
Aurelien Justet
Farida Ahangari
Xiting Yan
Paul Hansen
Marianne Carlon
Emanuela Cortesi
Marie Vermant
Robin Vos
De Sadeleer J Laurens
Ivan O Rosas
Ricardo Pineda
John Sembrat
Melanie Königshoff
John E McDonough
Bart M. Vanaudenaerde
Wim A Wuyts … (voir 2 de plus)
Naftali Kaminski
Advancing global antifungal development to combat invasive fungal infection
Xiu-Li Wang
Koon Ho Wong
Chen Ding
Chang-Bin Chen
Wen-Juan Wu
Ningning Liu
Harnessing agent-based frameworks in CellAgentChat to unravel cell-cell interactions from single-cell and spatial transcriptomics
Vishvak Raghavan
Yumin Zheng
DTractor enhances cell type deconvolution in spatial transcriptomics by integrating deep neural networks, transfer learning, and matrix factorization
Yong Jin Kweon
Chenyu Liu
Gregory J. Fonseca
Efficient and scalable construction of clinical variable networks for complex diseases with RAMEN.
Yiwei Xiong
Jingtao Wang
Xiaoxiao Shang
Tingting Chen
Douglas D. Fraser
Gregory Fonseca
Simon Rousseau
scCobra allows contrastive cell embedding learning with domain adaptation for single cell data integration and harmonization
Bowen Zhao
Kailu Song
Dong-Qing Wei
Yi Xiong
DTPSP: A Deep Learning Framework for Optimized Time Point Selection in Time-Series Single-Cell Studies
Michel Hijazin
Pumeng Shi
Jingtao Wang
DTPSP: A Deep Learning Framework for Optimized Time Point Selection in Time-Series Single-Cell Studies
Michel Hijazin
Pumeng Shi
Jingtao Wang
Time-series studies are critical for uncovering dynamic biological processes, but achieving comprehensive profiling and resolution across mu… (voir plus)ltiple time points and modalities (multi-omics) remains challenging due to cost and scalability constraints. Current methods for studying temporal dynamics, whether at the bulk or single-cell level, often require extensive sampling, making it impractical to deeply profile all time points and modalities. To overcome these limitations, we present DTPSP, a deep learning framework designed to identify the most informative time points in any time-series study, enabling resource-efficient and targeted analyses. DTPSP models temporal gene expression patterns using readily obtainable data, such as bulk RNA-seq, to select time points that capture key system dynamics. It also integrates a deep generative module to infer data for non-sampled time points based on the selected time points, reconstructing the full temporal trajectory. This dual capability enables DTPSP to prioritize key time points for in-depth profiling, such as single-cell sequencing or multi-omics analyses, while filling gaps in the temporal landscape with high fidelity. We apply DTPSP to developmental and disease-associated time courses, demonstrating its ability to optimize experimental designs across bulk and single-cell studies. By reducing costs, enabling strategic multi-omics profiling, and enhancing biological insights, DTPSP provides a scalable and generalized solution for investigating dynamic systems.
CellSexID: Sex-Based Computational Tracking of Cellular Origins in Chimeric Models
Huilin Tai
Qian Li
Jingtao Wang
Jiahui Tan
Ryann Lang
Basil J. Petrof
Cell tracking in chimeric models is essential yet challenging, particularly in developmental biology, regenerative medicine, and transplanta… (voir plus)tion studies. Existing methods, such as fluorescent labeling and genetic barcoding, are technically demanding, costly, and often impractical for dynamic, heterogeneous tissues. To address these limitations, we propose a computational framework that leverages sex as a surrogate marker for cell tracking. Our approach uses a machine learning model trained on single-cell transcriptomic data to predict cell sex with high accuracy, enabling clear distinction between donor (male) and recipient (female) cells in sex-mismatched chimeric models. The model identifies specific genes critical for sex prediction and has been validated using public datasets and experimental flow sorting, confirming the biological relevance of the identified cell populations. Applied to skeletal muscle macrophages, our method revealed distinct transcriptional profiles associated with cellular origins. This pipeline offers a robust, cost-effective solution for cell tracking in chimeric models, advancing research in regenerative medicine and immunology by providing precise insights into cellular origins and therapeutic outcomes.
CellSexID: Sex-Based Computational Tracking of Cellular Origins in Chimeric Models
Huilin Tai
Qian Li
Jingtao Wang
Jiahui Tan
Ryann Lang
Basil J. Petrof
Cell tracking in chimeric models is essential yet challenging, particularly in developmental biology, regenerative medicine, and transplanta… (voir plus)tion studies. Existing methods, such as fluorescent labeling and genetic barcoding, are technically demanding, costly, and often impractical for dynamic, heterogeneous tissues. To address these limitations, we propose a computational framework that leverages sex as a surrogate marker for cell tracking. Our approach uses a machine learning model trained on single-cell transcriptomic data to predict cell sex with high accuracy, enabling clear distinction between donor (male) and recipient (female) cells in sex-mismatched chimeric models. The model identifies specific genes critical for sex prediction and has been validated using public datasets and experimental flow sorting, confirming the biological relevance of the identified cell populations. Applied to skeletal muscle macrophages, our method revealed distinct transcriptional profiles associated with cellular origins. This pipeline offers a robust, cost-effective solution for cell tracking in chimeric models, advancing research in regenerative medicine and immunology by providing precise insights into cellular origins and therapeutic outcomes.
MATES: A Deep Learning-Based Model for Locus-specific Quantification of Transposable Elements in Single Cell
Ruohan Wang
Yumin Zheng
Zijian Zhang
Kailu Song
Erxi Wu
Xiaopeng Zhu
Tao P. Wu
Transposable elements (TEs) are crucial for genetic diversity and gene regulation. Current single-cell quantification methods often align mu… (voir plus)lti-mapping reads to either ‘best-mapped’ or ‘random-mapped’ locations and categorize them at sub-family levels, overlooking the biological necessity for accurate, locus-specific TE quantification. Moreover, these existing methods are primarily designed for and focused on transcriptomics data, which restricts their adaptability to single-cell data of other modalities. To address these challenges, here we introduce MATES, a novel deep-learning approach that accurately allocates multi-mapping reads to specific loci of TEs, utilizing context from adjacent read alignments flanking the TE locus. When applied to diverse single-cell omics datasets, MATES shows improved performance over existing methods, enhancing the accuracy of TE quantification and aiding in the identification of marker TEs for identified cell populations. This development enables exploring single-cell heterogeneity and gene regulation through the lens of TEs, offering a transformative tool for the single-cell genomics community.