Portrait de Joey Bose

Joey Bose

Membre affilié
University of Oxford, Département d'informatique
Sujets de recherche
Apprentissage profond
Apprentissage profond géométrique
IA pour la science
Modèles génératifs
Modélisation moléculaire

Publications

On the Stability of Iterative Retraining of Generative Models on their own Data
Quentin Bertrand
Alexandre Duplessis
Marco Jiralerspong
Deep generative models have made tremendous progress in modeling complex data, often exhibiting generation quality that surpasses a typical … (voir plus)human's ability to discern the authenticity of samples. Undeniably, a key driver of this success is enabled by the massive amounts of web-scale data consumed by these models. Due to these models' striking performance and ease of availability, the web will inevitably be increasingly populated with synthetic content. Such a fact directly implies that future iterations of generative models will be trained on both clean and artificially generated data from past models. In this paper, we develop a framework to rigorously study the impact of training generative models on mixed datasets---from classical training on real data to self-consuming generative models trained on purely synthetic data. We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough and the proportion of clean training data (w.r.t. synthetic data) is large enough. We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models on CIFAR10 and FFHQ.
Metric Flow Matching for Smooth Interpolations on the Data Manifold
Kacper Kapusniak
Peter Potaptchik
Teodora Reu
Leo Zhang
Alexander Tong
Michael M. Bronstein
Francesco Di Giovanni
Matching objectives underpin the success of modern generative models and rely on constructing conditional paths that transform a source dist… (voir plus)ribution into a target distribution. Despite being a fundamental building block, conditional paths have been designed principally under the assumption of Euclidean geometry, resulting in straight interpolations. However, this can be particularly restrictive for tasks such as trajectory inference, where straight paths might lie outside the data manifold, thus failing to capture the underlying dynamics giving rise to the observed marginals. In this paper, we propose Metric Flow Matching (MFM), a novel simulation-free framework for conditional flow matching where interpolants are approximate geodesics learned by minimizing the kinetic energy of a data-induced Riemannian metric. This way, the generative model matches vector fields on the data manifold, which corresponds to lower uncertainty and more meaningful interpolations. We prescribe general metrics to instantiate MFM, independent of the task, and test it on a suite of challenging problems including LiDAR navigation, unpaired image translation, and modeling cellular dynamics. We observe that MFM outperforms the Euclidean baselines, particularly achieving SOTA on single-cell trajectory prediction.
Predicting Drug Effects from High-Dimensional, Asymmetric Drug Datasets by Using Graph Neural Networks: A Comprehensive Analysis of Multitarget Drug Effect Prediction
Guojing Cong
Graph neural networks (GNNs) have emerged as one of the most effective ML techniques for drug effect prediction from drug molecular graphs. … (voir plus)Despite having immense potential, GNN models lack performance when using datasets that contain high-dimensional, asymmetrically co-occurrent drug effects as targets with complex correlations between them. Training individual learning models for each drug effect and incorporating every prediction result for a wide spectrum of drug effects are impractical. Therefore, an opportunity exists to address this challenge as multitarget prediction problems and predict all drug effects at a time. We developed standard and hybrid GNNs to perform two separate tasks: multiregression for continuous values and multilabel classification for categorical values contained in our datasets. Because multilabel classification makes the target data even more sparse and introduces asymmetric label co-occurrence, learning these models becomes difficult and heavily impacts the GNN's performance. To address these challenges, we propose a new data oversampling technique to improve multilabel classification performances on all the given imbalanced molecular graph datasets. Using the technique, we improve the data imbalance ratio of the drug effects while protecting the datasets' integrity. Finally, we evaluate the multilabel classification performance of the best-performing hybrid GNN model on all the oversampled datasets obtained from the proposed oversampling technique. In all the evaluation metrics (i.e., precision, recall, and F1 score), this model significantly outperforms other ML models, including GNN models when they are trained on the original datasets or oversampled datasets with MLSMOTE, which is a well-known oversampling technique.
Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Generation.
Guillaume Huguet
James Vuckovic
Kilian FATRAS
Eric Laufer
Pablo Lemos
Riashat Islam
Cheng-Hao Liu
Jarrid Rector-Brooks
Tara Akhound-Sadegh
Michael M. Bronstein
Alexander Tong
A General Framework For Proving The Equivariant Strong Lottery Ticket Hypothesis
Damien Ferbach
Christos Tsirigotis
The Strong Lottery Ticket Hypothesis (SLTH) stipulates the existence of a subnetwork within a sufficiently overparameterized (dense) neural … (voir plus)network that -- when initialized randomly and without any training -- achieves the accuracy of a fully trained target network. Recent works by Da Cunha et. al 2022; Burkholz 2022 demonstrate that the SLTH can be extended to translation equivariant networks -- i.e. CNNs -- with the same level of overparametrization as needed for the SLTs in dense networks. However, modern neural networks are capable of incorporating more than just translation symmetry, and developing general equivariant architectures such as rotation and permutation has been a powerful design principle. In this paper, we generalize the SLTH to functions that preserve the action of the group
Feature Likelihood Divergence: Evaluating the Generalization of Generative Models Using Samples
Marco Jiralerspong
Ian Gemp
Chongli Qin
Yoram Bachrach
Feature Likelihood Score: Evaluating Generalization of Generative Models Using Samples
Marco Jiralerspong
Deep generative models have demonstrated the ability to generate complex, high-dimensional, and photo-realistic data. However, a unified fr… (voir plus)amework for evaluating different generative modeling families remains a challenge. Indeed, likelihood-based metrics do not apply in many cases while pure sample-based metrics such as FID fail to capture known failure modes such as overfitting on training data. In this work, we introduce the Feature Likelihood Score (FLS), a parametric sample-based score that uses density estimation to quantitatively measure the quality/diversity of generated samples while taking into account overfitting. We empirically demonstrate the ability of FLS to identify specific overfitting problem cases, even when previously proposed metrics fail. We further perform an extensive experimental evaluation on various image datasets and model classes. Our results indicate that FLS matches intuitions of previous metrics, such as FID, while providing a more holistic evaluation of generative models that highlights models whose generalization abilities are under or overappreciated. Code for computing FLS is provided at https://github.com/marcojira/fls.
Riemannian Diffusion Models
Chin-Wei Huang
Milad Aghajohari
Diffusion models are recent state-of-the-art methods for image generation and likelihood estimation. In this work, we generalize continuous-… (voir plus)time diffusion models to arbitrary Riemannian manifolds and derive a variational framework for likelihood estimation. Computationally, we propose new methods for computing the Riemannian divergence which is needed for likelihood estimation. Moreover, in generalizing the Euclidean case, we prove that maximizing this variational lower-bound is equivalent to Riemannian score matching. Empirically, we demonstrate the expressive power of Riemannian diffusion models on a wide spectrum of smooth manifolds, such as spheres, tori, hyperboloids, and orthogonal groups. Our proposed method achieves new state-of-the-art likelihoods on all benchmarks.
A Cross-Domain Transferable Neural Coherence Model
Peng Xu
H. Saghir
Jin Sung Kang
Teng Long
Yanshuai Cao
Coherence is an important aspect of text quality and is crucial for ensuring its readability. One important limitation of existing coherence… (voir plus) models is that training on one domain does not easily generalize to unseen categories of text. Previous work advocates for generative models for cross-domain generalization, because for discriminative models, the space of incoherent sentence orderings to discriminate against during training is prohibitively large. In this work, we propose a local discriminative neural model with a much smaller negative sampling space that can efficiently learn against incorrect orderings. The proposed coherence model is simple in structure, yet it significantly outperforms previous state-of-art methods on a standard benchmark dataset on the Wall Street Journal corpus, as well as in multiple new challenging settings of transfer to unseen categories of discourse on Wikipedia articles.