Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Jeremie Zumer
Alumni
Publications
Pepid: a Highly Modifiable, Bioinformatics-Oriented Peptide Search Engine
The current mainstream software for peptide-centric tandem mass spectrometry data analysis can be categorized as either database-driven, whi… (voir plus)ch rely on a library of mass spectra to identify the peptide associated with novel query spectra, or de novo sequencing-based, which aim to find the entire peptide sequence by relying only on the query mass spectrum. While the first paradigm currently produces state-of-the-art results in peptide identification tasks, it does not inherently make use of information present in the query mass spectrum itself to refine identifications. Meanwhile, de novo approaches attempt to solve a complex problem in one go, without any search space constraints in the general case, leading to comparatively poor results. In this paper, we decompose the de novo problem into putatively easier subproblems, and we show that peptide identification rates of database-driven methods may be improved in terms of peptide identification rate by solving one such subsproblem without requiring a solution for the complete de novo task. We demonstrate this using a de novo peptide length prediction task as the chosen subproblem. As a first prototype, we show that a deep learning-based length prediction model increases peptide identification rates in the ProteomeTools dataset as part of an Pepid-based identification pipeline. Using the predicted information to better rank the candidates, we show that combining ideas from the two paradigms produces clear benefits in this setting. We propose that the next generation of peptide-centric tandem mass spectrometry identification methods should combine elements of these paradigms by mining facts “de novo; about the peptide represented in a spectrum, while simultaneously limiting the search space with a peptide candidates database.