Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Jeremie Zumer
Alumni
Publications
Pepid: a Highly Modifiable, Bioinformatics-Oriented Peptide Search Engine
The current mainstream software for peptide-centric tandem mass spectrometry data analysis can be categorized as either database-driven, whi… (see more)ch rely on a library of mass spectra to identify the peptide associated with novel query spectra, or de novo sequencing-based, which aim to find the entire peptide sequence by relying only on the query mass spectrum. While the first paradigm currently produces state-of-the-art results in peptide identification tasks, it does not inherently make use of information present in the query mass spectrum itself to refine identifications. Meanwhile, de novo approaches attempt to solve a complex problem in one go, without any search space constraints in the general case, leading to comparatively poor results. In this paper, we decompose the de novo problem into putatively easier subproblems, and we show that peptide identification rates of database-driven methods may be improved in terms of peptide identification rate by solving one such subsproblem without requiring a solution for the complete de novo task. We demonstrate this using a de novo peptide length prediction task as the chosen subproblem. As a first prototype, we show that a deep learning-based length prediction model increases peptide identification rates in the ProteomeTools dataset as part of an Pepid-based identification pipeline. Using the predicted information to better rank the candidates, we show that combining ideas from the two paradigms produces clear benefits in this setting. We propose that the next generation of peptide-centric tandem mass spectrometry identification methods should combine elements of these paradigms by mining facts “de novo; about the peptide represented in a spectrum, while simultaneously limiting the search space with a peptide candidates database.