Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Achieving artificial visual reasoning - the ability to answer image-related questions which require a multi-step, high-level process - is an… (voir plus) important step towards artificial general intelligence. This multi-modal task requires learning a question-dependent, structured reasoning process over images from language. Standard deep learning approaches tend to exploit biases in the data rather than learn this underlying structure, while leading methods learn to visually reason successfully but are hand-crafted for reasoning. We show that a general-purpose, Conditional Batch Normalization approach achieves state-of-the-art results on the CLEVR Visual Reasoning benchmark with a 2.4% error rate. We outperform the next best end-to-end method (4.5%) and even methods that use extra supervision (3.1%). We probe our model to shed light on how it reasons, showing it has learned a question-dependent, multi-step process. Previous work has operated under the assumption that visual reasoning calls for a specialized architecture, but we show that a general architecture with proper conditioning can learn to visually reason effectively.
It is commonly assumed that language refers to high-level visual concepts while leaving low-level visual processing unaffected. This view do… (voir plus)minates the current literature in computational models for language-vision tasks, where visual and linguistic input are mostly processed independently before being fused into a single representation. In this paper, we deviate from this classic pipeline and propose to modulate the \emph{entire visual processing} by linguistic input. Specifically, we condition the batch normalization parameters of a pretrained residual network (ResNet) on a language embedding. This approach, which we call MOdulated RESnet (\MRN), significantly improves strong baselines on two visual question answering tasks. Our ablation study shows that modulating from the early stages of the visual processing is beneficial.
It is commonly assumed that language refers to high-level visual concepts while leaving low-level visual processing unaffected. This view do… (voir plus)minates the current literature in computational models for language-vision tasks, where visual and linguistic input are mostly processed independently before being fused into a single representation. In this paper, we deviate from this classic pipeline and propose to modulate the \emph{entire visual processing} by linguistic input. Specifically, we condition the batch normalization parameters of a pretrained residual network (ResNet) on a language embedding. This approach, which we call MOdulated RESnet (\MRN), significantly improves strong baselines on two visual question answering tasks. Our ablation study shows that modulating from the early stages of the visual processing is beneficial.