Portrait de Antoine Prouvost n'est pas disponible

Antoine Prouvost

Alumni

Publications

Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon
The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights
Simon Bowly
Jonas Charfreitag
Didier Chételat
Antonia Chmiela
Justin Dumouchelle
Ambros Gleixner
Aleksandr Kazachkov
Elias Boutros Khalil
Paweł Lichocki
Andrea Lodi
Miles Lubin
Chris J. Maddison
D. Papageorgiou
Augustin Parjadis
Sebastian Pokutta
Lara Scavuzzo
Linxin Yangm
Sha Lai
Akang Wang
Xiaodong Luo
Xiang Zhou
Haohan Huang
Sheng Cheng Shao
Yuanming Zhu
Dong Dong Zhang
Tao Manh Quan
Zixuan Cao
Yang Xu
Zhewei Huang
Shuchang Zhou
C. Binbin
He Minggui
Haoren Ren Hao
Zhang Zhiyu
An Zhiwu
Mao Kun
Combinatorial optimization is a well-established area in operations research and computer science. Until recently, its methods have focused … (voir plus)on solving problem instances in isolation, ignoring that they often stem from related data distributions in practice. However, recent years have seen a surge of interest in using machine learning as a new approach for solving combinatorial problems, either directly as solvers or by enhancing exact solvers. Based on this context, the ML4CO aims at improving state-of-the-art combinatorial optimization solvers by replacing key heuristic components. The competition featured three challenging tasks: finding the best feasible solution, producing the tightest optimality certificate, and giving an appropriate solver configuration. Three realistic datasets were considered: balanced item placement, workload apportionment, and maritime inventory routing. This last dataset was kept anonymous for the contestants.