Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Model-free reinforcement learning (RL) is a powerful paradigm for learning complex tasks but suffers from high sample inefficiency as well a… (voir plus)s ignorance of the environment dynamics. On the other hand, a model-based RL agent learns dynamical causal models of the environment and uses them to plan. However, using a model at the scale of time-steps (usually tens of milliseconds) is mostly unfeasible in practice due to compounding prediction errors and computational requirements for making vast numbers of model queries during the planning process. We propose to use a modelbased planner together with a goal-conditioned policy trained with model-free learning. We use a model-based planner that operates at higher levels of abstraction i.e., decision states and use modelfree RL between the decision states. We validate our approach in terms of transfer and generalization performance and show that it leads to improvement over model-based planner that jumps to states that are fixed timesteps ahead.