Portrait de AJung Moon

AJung Moon

Membre académique principal
Professeure adjointe, McGill University, Département de génie électrique et informatique
Sujets de recherche
Équité
Éthique de l'IA
Éthique des robots
IA centrée sur l'humain
Interaction humain-IA
Interaction humain-machine (IHM)
Interaction humain-robot
Robotique
Sécurité de l'IA

Biographie

AJung Moon est une roboticienne expérimentale. Elle étudie comment les robots et les systèmes d'intelligence artificielle influencent la façon dont les gens se déplacent, se comportent et prennent des décisions, afin de déterminer comment nous pouvons concevoir et déployer de tels systèmes intelligents autonomes de manière plus responsable.

À l'Université McGill, elle est directrice du laboratoire McGill Responsible Autonomy & Intelligent System Ethics (RAISE). Le laboratoire RAISE est un groupe interdisciplinaire qui étudie les implications sociales et éthiques des robots et des systèmes d'intelligence artificielle, et explore ce que cela signifie pour les ingénieurs de concevoir et de déployer ces systèmes de manière responsable pour un avenir technologique meilleur.

Étudiants actuels

Maîtrise recherche - McGill
Doctorat - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Stagiaire de recherche - McGill
Doctorat - McGill

Publications

Roboethics for everyone – A hands-on teaching module for K-12 and beyond
Rahatul Amin Ananto
Shalaleh Rismani
Lixiao Zhu
Christopher Yee Wong
In this work, we address the evolving landscape of roboethics, expanding beyond physical safety to encompass broader societal implications. … (voir plus)Recognizing the siloed nature of existing initiatives to teach and inform ethical implications of artificial intelligence (AI) and robotic systems, we present a roboethics teaching module designed for K-12 students and general audiences. The module focuses on the high-level analysis of the interplay between robot behaviour design choices and ethics, using everyday social dilemmas. We delivered the module in a workshop to high school students in Montreal, Canada. From this experience, we observed that the module successfully fostered critical thinking and ethical considerations in students, without requiring advanced technical knowledge. This teaching module holds promise to reach a wider range of populations. We urge the education community to explore similar approaches and engage in interdisciplinary training opportunities regarding the ethical implications of AI and robotics.
Roboethics for everyone – A hands-on teaching module for K-12 and beyond
Rahatul Amin Ananto
Shalaleh Rismani
Lixiao Zhu
Christopher Yee Wong
In this work, we address the evolving landscape of roboethics, expanding beyond physical safety to encompass broader societal implications. … (voir plus)Recognizing the siloed nature of existing initiatives to teach and inform ethical implications of artificial intelligence (AI) and robotic systems, we present a roboethics teaching module designed for K-12 students and general audiences. The module focuses on the high-level analysis of the interplay between robot behaviour design choices and ethics, using everyday social dilemmas. We delivered the module in a workshop to high school students in Montreal, Canada. From this experience, we observed that the module successfully fostered critical thinking and ethical considerations in students, without requiring advanced technical knowledge. This teaching module holds promise to reach a wider range of populations. We urge the education community to explore similar approaches and engage in interdisciplinary training opportunities regarding the ethical implications of AI and robotics.
From Silos to Systems: Process-Oriented Hazard Analysis for AI Systems
Shalaleh Rismani
Roel Dobbe
How different mental models of AI-based writing assistants impact writers’ interactions with them
Shalaleh Rismani
Su Lin Blodgett
Q. Vera Liao
Investigating Robot Influence on Human Behaviour By Leveraging Entrainment Effects
Lixiao Zhu
Perspectives on Robotic Systems for the Visually Impaired
Christopher Yee Wong
Rahatul Amin Ananto
Tanaka Akiyama
Joseph Paul Nemargut
Socially Assistive Robots for patients with Alzheimer's Disease: A scoping review.
Vania Karami
Mark J. Yaffe
Genevieve Gore
Socially Assistive Robots for patients with Alzheimer's Disease: A scoping review.
Vania Karami
Mark J. Yaffe
Genevieve Gore
Socially Assistive Robots for patients with Alzheimer's Disease: A scoping review.
Vania Karami
Mark J. Yaffe
Genevieve Gore
Socially Assistive Robots for patients with Alzheimer's Disease: A scoping review.
Vania Karami
Mark J. Yaffe
Genevieve Gore
No such thing as one-size-fits-all in AI ethics frameworks: a comparative case study
Vivian Qiang
Jimin Rhim
Improving Generalization in Reinforcement Learning Training Regimes for Social Robot Navigation
In order for autonomous mobile robots to navigate in human spaces, they must abide by our social norms. Reinforcement learning (RL) has emer… (voir plus)ged as an effective method to train robot sequential decision-making policies that are able to respect these norms. However, a large portion of existing work in the field conducts both RL training and testing in simplistic environments. This limits the generalization potential of these models to unseen environments, and undermines the meaningfulness of their reported results. We propose a method to improve the generalization performance of RL social navigation methods using curriculum learning. By employing multiple environment types and by modeling pedestrians using multiple dynamics models, we are able to progressively diversify and escalate difficulty in training. Our results show that the use of curriculum learning in training can be used to achieve better generalization performance than previous training methods. We also show that results presented in many existing state-of-the art RL social navigation works do not evaluate their methods outside of their training environments, and thus do not reflect their policies' failure to adequately generalize to out-of-distribution scenarios. In response, we validate our training approach on larger and more crowded testing environments than those used in training, allowing for more meaningful measurements of model performance.