Peu importe la taille : démocratiser la découverte de protéines avec l'IA
Des chercheurs de Mila ont créé un puissant modèle de langage protéique à source ouverte plus compact et efficace afin de démocratiser la découverte de protéines.
La prochaine cohorte de notre programme, conçu pour fournir aux participant·e·s une compréhension fondamentale des technologies de l'IA, se déroulera à Ottawa les 28 et 29 novembre.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Harnessing Pre-trained Generalist Agents for Software Engineering Tasks
Nowadays, we are witnessing an increasing adoption of Artificial Intelligence (AI) to develop techniques aimed at improving the reliability,… (voir plus) effectiveness, and overall quality of software systems. Deep reinforcement learning (DRL) has recently been successfully used for automation in complex tasks such as game testing and solving the job-shop scheduling problem. However, these specialized DRL agents, trained from scratch on specific tasks, suffer from a lack of generalizability to other tasks and they need substantial time to be developed and re-trained effectively. Recently, DRL researchers have begun to develop generalist agents, able to learn a policy from various environments and capable of achieving performances similar to or better than specialist agents in new tasks. In the Natural Language Processing or Computer Vision domain, these generalist agents are showing promising adaptation capabilities to never-before-seen tasks after a light fine-tuning phase and achieving high performance. This paper investigates the potential of generalist agents for solving SE tasks. Specifically, we conduct an empirical study aimed at assessing the performance of two generalist agents on two important SE tasks: the detection of bugs in games (for two games) and the minimization of makespan in a scheduling task, to solve the job-shop scheduling problem (for two instances). Our results show that the generalist agents outperform the specialist agents with very little effort for fine-tuning, achieving a 20% reduction of the makespan over specialized agent performance on task-based scheduling. In the context of game testing, some generalist agent configurations detect 85% more bugs than the specialist agents. Building on our analysis, we provide recommendations for researchers and practitioners looking to select generalist agents for SE tasks, to ensure that they perform effectively.
The extraction of a small number of relevant insights from vast amounts of data is a crucial component of data-driven decision-making. Howev… (voir plus)er, accomplishing this task requires considerable technical skills, domain expertise, and human labor. This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data, leveraging recent advances in reasoning and code generation techniques. We propose a new evaluation methodology based on a"capture the flag"principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset. We further propose two proof-of-concept agents, with different inner workings, and compare their ability to capture such flags in a real-world sales dataset. While the work reported here is preliminary, our results are sufficiently interesting to mandate future exploration by the community.
Deep spectroscopic surveys with the Atacama Large Millimeter/submillimeter Array (ALMA) have revealed that some of the brightest infrared so… (voir plus)urces in the sky correspond to concentrations of submillimeter galaxies (SMGs) at high redshift. Among these, the SPT2349-56 protocluster system is amongst the most extreme examples given its high source density and integrated star formation rate. We conducted a deep Lyman-alpha line emission survey around SPT2349-56 using the Multi-Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) in order to characterize this uniquely dense environment. Taking advantage of the deep three-dimensional nature of this survey, we performed a sensitive search for Lyman-alpha emitters (LAEs) toward the core and northern extension of the protocluster, which correspond to the brightest infrared regions in this field. Using a smoothed narrowband image extracted from the MUSE datacube around the protocluster redshift, we searched for possible extended structures. We identify only three LAEs at
Widely considered a cornerstone of human morality, trust shapes many aspects of human social interactions. In this work, we present a theore… (voir plus)tical analysis of the
Background: We are witnessing an increasing adoption of machine learning (ML), especially deep learning (DL) algorithms in many software sys… (voir plus)tems, including safety-critical systems such as health care systems or autonomous driving vehicles. Ensuring the software quality of these systems is yet an open challenge for the research community, mainly due to the inductive nature of ML software systems. Traditionally, software systems were constructed deductively, by writing down the rules that govern the behavior of the system as program code. However, for ML software, these rules are inferred from training data. Few recent research advances in the quality assurance of ML systems have adapted different concepts from traditional software testing, such as mutation testing, to help improve the reliability of ML software systems. However, it is unclear if any of these proposed testing techniques from research are adopted in practice. There is little empirical evidence about the testing strategies of ML engineers. Aims: To fill this gap, we perform the first fine-grained empirical study on ML testing practices in the wild, to identify the ML properties being tested, the followed testing strategies, and their implementation throughout the ML workflow. Method: First, we systematically summarized the different testing strategies (e.g., Oracle Approximation), the tested ML properties (e.g., Correctness, Bias, and Fairness), and the testing methods (e.g., Unit test) from the literature. Then, we conducted a study to understand the practices of testing ML software. Results: In our findings: 1) we identified four (4) major categories of testing strategy including Grey-box, White-box, Black-box, and Heuristic-based techniques that are used by the ML engineers to find software bugs. 2) We identified 16 ML properties that are tested in the ML workflow.