Machine-learning-assisted preoperative prediction of pediatric appendicitis severity
Aylin Erman
Julia Ferreira
Waseem Abu Ashour
Elena Guadagno
Etienne St-Louis
Sherif Emil
Jackie Cheung
Machine-learning-assisted Preoperative Prediction of Pediatric Appendicitis Severity.
Aylin Erman
Julia Ferreira
Waseem Abu Ashour
Elena Guadagno
Etienne St-Louis
Sherif Emil
Jackie Cheung
MAD-TD: Model-Augmented Data stabilizes High Update Ratio RL
Claas Voelcker
Marcel Hussing
Eric R. Eaton
Amir-massoud Farahmand
Igor Gilitschenski
Building deep reinforcement learning (RL) agents that find a good policy with few samples has proven notoriously challenging. To achieve sam… (voir plus)ple efficiency, recent work has explored updating neural networks with large numbers of gradient steps for every new sample. While such high update-to-data (UTD) ratios have shown strong empirical performance, they also introduce instability to the training process. Previous approaches need to rely on periodic neural network parameter resets to address this instability, but restarting the training process is infeasible in many real-world applications and requires tuning the resetting interval. In this paper, we focus on one of the core difficulties of stable training with limited samples: the inability of learned value functions to generalize to unobserved on-policy actions. We mitigate this issue directly by augmenting the off-policy RL training process with a small amount of data generated from a learned world model. Our method, Model-Augmented Data for Temporal Difference learning (MAD-TD) uses small amounts of generated data to stabilize high UTD training and achieve competitive performance on the most challenging tasks in the DeepMind control suite. Our experiments further highlight the importance of employing a good model to generate data, MAD-TD's ability to combat value overestimation, and its practical stability gains for continued learning.
Maximizing Data and Hardware Reuse for HLS with Early-Stage Symbolic Partitioning
Tzung-Han Juang
Meta-learning Optimizers for Communication-Efficient Learning
Charles-Étienne Joseph
Benjamin Thérien
Abhinav Moudgil
Boris Knyazev
MLOps, LLMOps, FMOps, and Beyond
Chakkrit Kla Tantithamthavorn
Fabio Palomba
Joselito Joey Chua
MLOps, LLMOps, FMOps, and Beyond
Chakkrit Tantithamthavorn
Fabio Palomba
Joselito Joey Chua
MLOps, LLMOps, FMOps, and Beyond
Chakkrit Tantithamthavorn
Fabio Palomba
Joselito Joey Chua
Multimodal and Force-Matched Imitation Learning with a See-Through Visuotactile Sensor
Trevor Ablett
Oliver Limoyo
Adam Sigal
Affan Jilani
Jonathan Kelly
Francois Hogan
Kinesthetic Teaching is a popular approach to collecting expert robotic demonstrations of contact-rich tasks for imitation learning (IL), bu… (voir plus)t it typically only measures motion, ignoring the force placed on the environment by the robot. Furthermore, contact-rich tasks require accurate sensing of both reaching and touching, which can be difficult to provide with conventional sensing modalities. We address these challenges with a See-Through-your-Skin (STS) visuotactile sensor, using the sensor both (i) as a measurement tool to improve kinesthetic teaching, and (ii) as a policy input in contact-rich door manipulation tasks. An STS sensor can be switched between visual and tactile modes by leveraging a semi-transparent surface and controllable lighting, allowing for both pre-contact visual sensing and during-contact tactile sensing with a single sensor. First, we propose tactile force matching, a methodology that enables a robot to match forces read during kinesthetic teaching using tactile signals. Second, we develop a policy that controls STS mode switching, allowing a policy to learn the appropriate moment to switch an STS from its visual to its tactile mode. Finally, we study multiple observation configurations to compare and contrast the value of visual and tactile data from an STS with visual data from a wrist-mounted eye-in-hand camera. With over 3,000 test episodes from real-world manipulation experiments, we find that the inclusion of force matching raises average policy success rates by 62.5%, STS mode switching by 30.3%, and STS data as a policy input by 42.5%. Our results highlight the utility of see-through tactile sensing for IL, both for data collection to allow force matching, and for policy execution to allow accurate task feedback.
A Multi-Robot Exploration Planner for Space Applications
Vivek Shankar Vardharajan
A Multi-Robot Exploration Planner for Space Applications
Vivek Shankar Vardharajan
We propose a distributed multi-robot exploration planning method designed for complex, unconstrained environments featuring steep elevation … (voir plus)changes. The method employs a two-tiered approach: a local exploration planner that constructs a grid graph to maximize exploration gain and a global planner that maintains a sparse navigational graph to track visited locations and frontier information. The global graphs are periodically synchronized among robots within communication range to maintain an updated representation of the environment. Our approach integrates localization loop closure estimates to correct global graph drift. In simulation and field tests, the proposed method achieves 50% lower computational runtime compared to state-of-the-art methods while demonstrating superior exploration coverage. We evaluate its performance in two simulated subterranean environments and in field experiments at a Mars-analog terrain.
PairBench: A Systematic Framework for Selecting Reliable Judge VLMs
Aarash Feizi
Sai Rajeswar
Spandana Gella
Valentina Zantedeschi
Joao Monteiro
As large vision language models (VLMs) are increasingly used as automated evaluators, understanding their ability to effectively compare dat… (voir plus)a pairs as instructed in the prompt becomes essential. To address this, we present PairBench, a low-cost framework that systematically evaluates VLMs as customizable similarity tools across various modalities and scenarios. Through PairBench, we introduce four metrics that represent key desiderata of similarity scores: alignment with human annotations, consistency for data pairs irrespective of their order, smoothness of similarity distributions, and controllability through prompting. Our analysis demonstrates that no model, whether closed- or open-source, is superior on all metrics; the optimal choice depends on an auto evaluator's desired behavior (e.g., a smooth vs. a sharp judge), highlighting risks of widespread adoption of VLMs as evaluators without thorough assessment. For instance, the majority of VLMs struggle with maintaining symmetric similarity scores regardless of order. Additionally, our results show that the performance of VLMs on the metrics in PairBench closely correlates with popular benchmarks, showcasing its predictive power in ranking models.