Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Countering the Effects of Lead Bias in News Summarization via Multi-Stage Training and Auxiliary Losses
Sentence position is a strong feature for news summarization, since the lead often (but not always) summarizes the key points of the article… (voir plus). In this paper, we show that recent neural systems excessively exploit this trend, which although powerful for many inputs, is also detrimental when summarizing documents where important content should be extracted from later parts of the article. We propose two techniques to make systems sensitive to the importance of content in different parts of the article. The first technique employs ‘unbiased’ data; i.e., randomly shuffled sentences of the source document, to pretrain the model. The second technique uses an auxiliary ROUGE-based loss that encourages the model to distribute importance scores throughout a document by mimicking sentence-level ROUGE scores on the training data. We show that these techniques significantly improve the performance of a competitive reinforcement learning based extractive system, with the auxiliary loss being more powerful than pretraining.
2019-11-01
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (publié)
Learning and planning in partially-observable domains is one of the most difficult problems in reinforcement learning. Traditional methods c… (voir plus)onsider these two problems as independent, resulting in a classical two-stage paradigm: first learn the environment dynamics and then plan accordingly. This approach, however, disconnects the two problems and can consequently lead to algorithms that are sample inefficient and time consuming. In this paper, we propose a novel algorithm that combines learning and planning together. Our algorithm is closely related to the spectral learning algorithm for predicitive state representations and offers appealing theoretical guarantees and time complexity. We empirically show on two domains that our approach is more sample and time efficient compared to classical methods.
Recent studies have significantly improved the state-of-the-art on common-sense reasoning (CSR) benchmarks like the Winograd Schema Challeng… (voir plus)e (WSC) and SWAG. The question we ask in this paper is whether improved performance on these benchmarks represents genuine progress towards common-sense-enabled systems. We make case studies of both benchmarks and design protocols that clarify and qualify the results of previous work by analyzing threats to the validity of previous experimental designs. Our protocols account for several properties prevalent in common-sense benchmarks including size limitations, structural regularities, and variable instance difficulty.
2019-11-01
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (publié)
Humans observe and interact with the world to acquire knowledge. However, most existing machine reading comprehension (MRC) tasks miss the i… (voir plus)nteractive, information-seeking component of comprehension. Such tasks present models with static documents that contain all necessary information, usually concentrated in a single short substring. Thus, models can achieve strong performance through simple word- and phrase-based pattern matching. We address this problem by formulating a novel text-based question answering task: Question Answering with Interactive Text (QAit). In QAit, an agent must interact with a partially observable text-based environment to gather information required to answer questions. QAit poses questions about the existence, location, and attributes of objects found in the environment. The data is built using a text-based game generator that defines the underlying dynamics of interaction with the environment. We propose and evaluate a set of baseline models for the QAit task that includes deep reinforcement learning agents. Experiments show that the task presents a major challenge for machine reading systems, while humans solve it with relative ease.
2019-11-01
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (publié)
We present a reduction from reinforcement learning (RL) to no-regret online learning based on the saddle-point formulation of RL, by which "… (voir plus)any" online algorithm with sublinear regret can generate policies with provable performance guarantees. This new perspective decouples the RL problem into two parts: regret minimization and function approximation. The first part admits a standard online-learning analysis, and the second part can be quantified independently of the learning algorithm. Therefore, the proposed reduction can be used as a tool to systematically design new RL algorithms. We demonstrate this idea by devising a simple RL algorithm based on mirror descent and the generative-model oracle. For any
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (publié)
Neural Module Networks, originally proposed for the task of visual question answering, are a class of neural network architectures that invo… (voir plus)lve human-specified neural modules, each designed for a specific form of reasoning. In current formulations of such networks only the parameters of the neural modules and/or the order of their execution is learned. In this work, we further expand this approach and also learn the underlying internal structure of modules in terms of the ordering and combination of simple and elementary arithmetic operators. We utilize a minimum amount of prior knowledge from the human-specified neural modules in the form of different input types and arithmetic operators used in these modules. Our results show that one is indeed able to simultaneously learn both internal module structure and module sequencing without extra supervisory signals for module execution sequencing. With this approach, we report performance comparable to models using hand-designed modules. In addition, we do a analysis of sensitivity of the learned modules w.r.t. the arithmetic operations and infer the analytical expressions of the learned modules.
2019-11-01
Proceedings of the Beyond Vision and LANguage: inTEgrating Real-world kNowledge (LANTERN) (publié)
Stack-augmented recurrent neural networks (RNNs) have been of interest to the deep learning community for some time. However, the difficulty… (voir plus) of training memory models remains a problem obstructing the widespread use of such models. In this paper, we propose the Ordered Memory architecture. Inspired by Ordered Neurons (Shen et al., 2018), we introduce a new attention-based mechanism and use its cumulative probability to control the writing and erasing operation of the memory. We also introduce a new Gated Recursive Cell to compose lower-level representations into higher-level representation. We demonstrate that our model achieves strong performance on the logical inference task (Bowman et al., 2015) and the ListOps (Nangia and Bowman, 2018) task. We can also interpret the model to retrieve the induced tree structure, and find that these induced structures align with the ground truth. Finally, we evaluate our model on the Stanford Sentiment Treebank tasks (Socher et al., 2013), and find that it performs comparatively with the state-of-the-art methods in the literature.