Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky
Polar codes are a recently discovered family of capacity-achieving codes that are seen as a major breakthrough in coding theory. Motivated b… (voir plus)y the recent rapid progress in the theory of polar codes, we propose a semi-parallel architecture for the implementation of successive cancellation decoding. We take advantage of the recursive structure of polar codes to make efficient use of processing resources. The derived architecture has a very low processing complexity while the memory complexity remains similar to that of previous architectures. This drastic reduction in processing complexity allows very large polar code decoders to be implemented in hardware. An N=217 polar code successive cancellation decoder is implemented in an FPGA. We also report synthesis results for ASIC.
Polar codes are a recently discovered family of capacity-achieving codes that are seen as a major breakthrough in coding theory. Motivated b… (voir plus)y the recent rapid progress in the theory of polar codes, we propose a semi-parallel architecture for the implementation of successive cancellation decoding. We take advantage of the recursive structure of polar codes to make efficient use of processing resources. The derived architecture has a very low processing complexity while the memory complexity remains similar to that of previous architectures. This drastic reduction in processing complexity allows very large polar code decoders to be implemented in hardware. An N=217 polar code successive cancellation decoder is implemented in an FPGA. We also report synthesis results for ASIC.
In this paper, we present Theano 1 , a framework in the Python programming language for defining, optimizing and evaluating expressions invo… (voir plus)lving high-level operations on tensors. Theano offers most of NumPy’s functionality, but adds automatic symbolic differentiation, GPU support, and faster expression evaluation. Theano is a general mathematical tool, but it was developed with the goal of facilitating research in deep learning. The Deep Learning Tutorials 2 introduce recent advances in deep learning, and showcase how Theano
A new stochastic decoding algorithm, called Delayed Stochastic (DS) decoding, is introduced to implement low-density-parity-check (LDPC) dec… (voir plus)oders. The delayed stochastic decoding uses an alternative method to track probability values, which results in reduction of hardware complexity and memory requirement of the stochastic decoders. It is therefore suitable for fully-parallel implementation of long LDPC codes with applications in optical communications. Two decoders are implemented using the DS algorithm for medium (2048, 1723) and long (32768, 26624) LDPC codes. The decoders occupy 3.93- mm2 and 56.5- mm2 silicon area using 90-nm CMOS technology and provide maximum core throughputs of 172.4 and 477.7 Gb/s at [(Eb)/(No)]=5.5 and 4.8 dB, respectively.
A new stochastic decoding algorithm, called Delayed Stochastic (DS) decoding, is introduced to implement low-density-parity-check (LDPC) dec… (voir plus)oders. The delayed stochastic decoding uses an alternative method to track probability values, which results in reduction of hardware complexity and memory requirement of the stochastic decoders. It is therefore suitable for fully-parallel implementation of long LDPC codes with applications in optical communications. Two decoders are implemented using the DS algorithm for medium (2048, 1723) and long (32768, 26624) LDPC codes. The decoders occupy 3.93- mm2 and 56.5- mm2 silicon area using 90-nm CMOS technology and provide maximum core throughputs of 172.4 and 477.7 Gb/s at [(Eb)/(No)]=5.5 and 4.8 dB, respectively.