Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Commonsense mining as knowledge base completion? A study on the impact of novelty
Commonsense knowledge bases such as ConceptNet represent knowledge in the form of relational triples. Inspired by recent work by Li et al., … (voir plus)we analyse if knowledge base completion models can be used to mine commonsense knowledge from raw text. We propose novelty of predicted triples with respect to the training set as an important factor in interpreting results. We critically analyse the difficulty of mining novel commonsense knowledge, and show that a simple baseline method that outperforms the previous state of the art on predicting more novel triples.
2018-06-01
Proceedings of the Workshop on Generalization in the Age of Deep Learning (publié)
We introduce an automatic system that performs well on two common-sense reasoning tasks, the Winograd Schema Challenge (WSC) and the Choice … (voir plus)of Plausible Alternatives (COPA). Problem instances from these tasks require diverse, complex forms of inference and knowledge to solve. Our method uses a knowledge-hunting module to gather text from the web, which serves as evidence for candidate problem resolutions. Given an input problem, our system generates relevant queries to send to a search engine. It extracts and classifies knowledge from the returned results and weighs it to make a resolution. Our approach improves F1 performance on the WSC by 0.16 over the previous best and is competitive with the state-of-the-art on COPA, demonstrating its general applicability.
2018-06-01
North American Chapter of the Association for Computational Linguistics (publié)
We present an approach to event coreference resolution by developing a general framework for clustering that uses supervised representation … (voir plus)learning. We propose a neural network architecture with novel Clustering-Oriented Regularization (CORE) terms in the objective function. These terms encourage the model to create embeddings of event mentions that are amenable to clustering. We then use agglomerative clustering on these embeddings to build event coreference chains. For both within- and cross-document coreference on the ECB+ corpus, our model obtains better results than models that require significantly more pre-annotated information. This work provides insight and motivating results for a new general approach to solving coreference and clustering problems with representation learning.
2018-06-01
Proceedings of the Seventh Joint Conference on Lexical and
Computational Semantics (publié)
Software and systems traceability is widely accepted as an essential element for supporting many software development tasks. Today's version… (voir plus) control systems provide inbuilt features that allow developers to tag each commit with one or more issue ID, thereby providing the building blocks from which project-wide traceability can be established between feature requests, bug fixes, commits, source code, and specific developers. However, our analysis of six open source projects showed that on average only 60% of the commits were linked to specific issues. Without these fundamental links the entire set of project-wide links will be incomplete, and therefore not trustworthy. In this paper we address the fundamental problem of missing links between commits and issues. Our approach leverages a combination of process and text-related features characterizing issues and code changes to train a classifier to identify missing issue tags in commit messages, thereby generating the missing links. We conducted a series of experiments to evaluate our approach against six open source projects and showed that it was able to effectively recommend links for tagging issues at an average of 96% recall and 33% precision. In a related task for augmenting a set of existing trace links, the classifier returned precision at levels greater than 89% in all projects and recall of 50%.
2018-05-27
Proceedings of the 40th International Conference on Software Engineering (publié)
This paper presents a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size. MINE… (voir plus) is back-propable and we prove that it is strongly consistent. We illustrate a handful of applications in which MINE is succesfully applied to enhance the property of generative models in both unsupervised and supervised settings. We apply our framework to estimate the information bottleneck, and apply it in tasks related to supervised classification problems. Our results demonstrate substantial added flexibility and improvement in these settings.
We introduce a general-purpose conditioning method for neural networks called FiLM: Feature-wise Linear Modulation. FiLM layers influence ne… (voir plus)ural network computation via a simple, feature-wise affine transformation based on conditioning information. We show that FiLM layers are highly effective for visual reasoning - answering image-related questions which require a multi-step, high-level process - a task which has proven difficult for standard deep learning methods that do not explicitly model reasoning. Specifically, we show on visual reasoning tasks that FiLM layers 1) halve state-of-the-art error for the CLEVR benchmark, 2) modulate features in a coherent manner, 3) are robust to ablations and architectural modifications, and 4) generalize well to challenging, new data from few examples or even zero-shot.
2018-04-29
Proceedings of the AAAI Conference on Artificial Intelligence (publié)
We introduce an incremental processing scheme for convolutional neural network (CNN) inference, targeted at embedded applications with limit… (voir plus)ed memory budgets. Instead of processing layers one by one, individual input pixels are propagated through all parts of the network they can influence under the given structural constraints. This depth-first updating scheme comes with hard bounds on the memory footprint: the memory required is constant in the case of 1D input and proportional to the square root of the input dimension in the case of 2D input.
Usability and user experience (UX) issues are often not well emphasized and addressed in open source software (OSS) development. There is an… (voir plus) imperative need for supporting OSS communities to collaboratively identify, understand, and fix UX design issues in a distributed environment. In this paper, we provide an initial step towards this effort and report on an exploratory study that investigated how the OSS communities currently reported, discussed, negotiated, and eventually addressed usability and UX issues. We conducted in-depth qualitative analysis of selected issue tracking threads from three OSS projects hosted on GitHub. Our findings indicated that discussions about usability and UX issues in OSS communities were largely influenced by the personal opinions and experiences of the participants. Moreover, the characteristics of the community may have greatly affected the focus of such discussion.
2018-04-20
Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems (publié)
Spoken language understanding system is traditionally designed as a pipeline of a number of components. First, the audio signal is processed… (voir plus) by an automatic speech recognizer for transcription or n-best hypotheses. With the recognition results, a natural language understanding system classifies the text to structured data as domain, intent and slots for down-streaming consumers, such as dialog system, hands-free applications. These components are usually developed and optimized independently. In this paper, we present our study on an end-to-end learning system for spoken language understanding. With this unified approach, we can infer the semantic meaning directly from audio features without the intermediate text representation. This study showed that the trained model can achieve reasonable good result and demonstrated that the model can capture the semantic attention directly from the audio features.
2018-04-15
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (publié)
Minimizing a function over an intersection of convex sets is an important task in optimization that is often much more challenging than mini… (voir plus)mizing it over each individual constraint set. While traditional methods such as Frank-Wolfe (FW) or proximal gradient descent assume access to a linear or quadratic oracle on the intersection, splitting techniques take advantage of the structure of each sets, and only require access to the oracle on the individual constraints. In this work, we develop and analyze the Frank-Wolfe Augmented Lagrangian (FW-AL) algorithm, a method for minimizing a smooth function over convex compact sets related by a "linear consistency" constraint that only requires access to a linear minimization oracle over the individual constraints. It is based on the Augmented Lagrangian Method (ALM), also known as Method of Multipliers, but unlike most existing splitting methods, it only requires access to linear (instead of quadratic) minimization oracles. We use recent advances in the analysis of Frank-Wolfe and the alternating direction method of multipliers algorithms to prove a sublinear convergence rate for FW-AL over general convex compact sets and a linear convergence rate for polytopes.
Weighted finite automata (WFA) can expressively model functions defined over strings but are inherently linear models. Given the recent succ… (voir plus)esses of nonlinear models in machine learning, it is natural to wonder whether extending WFA to the nonlinear setting would be beneficial. In this paper, we propose a novel model of neural network based nonlinear WFA model (NL-WFA) along with a learning algorithm. Our learning algorithm is inspired by the spectral learning algorithm for WFA and relies on a nonlinear decomposition of the so-called Hankel matrix, by means of an auto-encoder network. The expressive power of NL-WFA and the proposed learning algorithm are assessed on both synthetic and real world data, showing that NL-WFA can lead to smaller model sizes and infer complex grammatical structures from data.
2018-03-31
International Conference on Artificial Intelligence and Statistics (published)