Portrait of Flavie Lavoie-Cardinal

Flavie Lavoie-Cardinal

Associate Academic Member
Associate Professor, Université Laval, Department of Psychiatry and Neurosciences
Research Topics
AI for Science
AI in Health
Anomaly Detection
Applied AI
Biophysics
Computational Biology
Computational Neuroscience
Computer Vision
Deep Learning
Foundation Models
Generative Models
Medical Image Segmentation
NeuroAI
Neuroscience

Publications

A Self-Supervised Foundation Model for Robust and Generalizable Representation Learning in STED Microscopy
Anthony Bilodeau
Julia Chabbert
Jean-Michel Bellavance
Koraly Lessard
Andréanne Deschênes
Renaud Bernatchez
Paul De Koninck
Development of AI-assisted microscopy frameworks through realistic simulation in pySTED
Anthony Bilodeau
Albert Michaud-Gagnon
Julia Chabbert
Benoit Turcotte
Jörn Heine
The integration of artificial intelligence into microscopy systems significantly enhances performance, optimizing both the image acquisition… (see more) and analysis phases. Development of artificial intelligence (AI)-assisted super-resolution microscopy is often limited by the access to large biological datasets, as well as by the difficulties to benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of a realistic STED simulation platform, pySTED, for the development and deployment of AI-strategies for super-resolution microscopy. The simulation environment provided by pySTED allows the augmentation of data for the training of deep neural networks, the development of online optimization strategies, and the training of reinforcement learning models, that can be deployed successfully on a real microscope.
Development of AI-assisted microscopy frameworks through realistic simulation with pySTED
Anthony Bilodeau
Albert Michaud-Gagnon
Julia Chabbert
Benoit Turcotte
Jörn Heine
Development of AI-assisted microscopy frameworks through realistic simulation with pySTED
Anthony Bilodeau
Albert Michaud-Gagnon
Julia Chabbert
Benoit Turcotte
Jörn Heine
Development of AI-assisted microscopy frameworks through realistic simulation with pySTED
Anthony Bilodeau
Albert Michaud-Gagnon
Julia Chabbert
Benoit Turcotte
Jörn Heine
The integration of artificial intelligence (AI) into microscopy systems significantly enhances performance, optimizing both the image acquis… (see more)ition and analysis phases. Development of AI-assisted super-resolution microscopy is often limited by the access to large biological datasets, as well as by the difficulties to benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of a realistic STED simulation platform, pySTED, for the development and deployment of AI-strategies for super-resolution microscopy. The simulation environment provided by pySTED allows the augmentation of data for the training of deep neural networks, the development of online optimization strategies, and the training of reinforcement learning models, that can be deployed successfully on a real microscope.
Development of AI-assisted microscopy frameworks through realistic simulation with pySTED
Anthony Bilodeau
Albert Michaud-Gagnon
Julia Chabbert
Benoit Turcotte
Jörn Heine
Quantitative Analysis of Miniature Synaptic Calcium Transients Using Positive Unlabeled Deep Learning
Anthony Bilodeau
Theresa Wiesner
Gabriel Leclerc
Mado Lemieux
Gabriel Nadeau
Katrine Castonguay
Bolin Fan
Simon Labrecque
Renée Hložek
Paul De Koninck
Ca2+ imaging methods are widely used for studying cellular activity in the brain, allowing detailed analysis of dynamic processes across var… (see more)ious scales. Enhanced by high-contrast optical microscopy and fluorescent Ca2+ sensors, this technique can be used to reveal localized Ca2+ fluctuations within neurons, including in sub-cellular compartments, such as the dendritic shaft or spines. Despite advances in Ca2+ sensors, the analysis of miniature Synaptic Calcium Transients (mSCTs), characterized by variability in morphology and low signal-to-noise ratios, remains challenging. Traditional threshold-based methods struggle with the detection and segmentation of these small, dynamic events. Deep learning (DL) approaches offer promising solutions but are limited by the need for large annotated datasets. Positive Unlabeled (PU) learning addresses this limitation by leveraging unlabeled instances to increase dataset size and enhance performance. This approach is particularly useful in the case of mSCTs that are scarce and small, associated with a very small proportion of the foreground pixels. PU learning significantly increases the effective size of the training dataset, improving model performance. Here, we present a PU learning-based strategy for detecting and segmenting mSCTs. We evaluate the performance of two 3D deep learning models, StarDist-3D and 3D U-Net, which are well established for the segmentation of small volumetric structures in microscopy datasets. By integrating PU learning, we enhance the 3D U-Net’s performance, demonstrating significant gains over traditional methods. This work pioneers the application of PU learning in Ca2+ imaging analysis, offering a robust framework for mSCT detection and segmentation. We also demonstrate how this quantitative analysis pipeline can be used for subsequent mSCTs feature analysis. We characterize morphological and kinetic changes of mSCTs associated with the application of chemical long-term potentiation (cLTP) stimulation in cultured rat hippocampal neurons. Our data-driven approach shows that a cLTP-inducing stimulus leads to the emergence of new active dendritic regions and differently affects mSCTs subtypes.
Filtering Pixel Latent Variables for Unmixing Noisy and Undersampled Volumetric Images
Andréanne Deschênes
Vincent Boulanger
Jean-Michel Bellavance
Julia Chabbert
Alexy Pelletier-Rioux
Unmixing Optical Signals from Undersampled Volumetric Measurements by Filtering the Pixel Latent Variables
Andréanne Deschênes
Vincent Boulanger
Jean-Michel Bellavance
Julia Chabbert
Alexy Pelletier-Rioux
Unmixing Optical Signals from Undersampled Volumetric Measurements by Filtering the Pixel Latent Variables
Andréanne Deschênes
Vincent Boulanger
Jean-Michel Bellavance
Julia Chabbert
Alexy Pelletier-Rioux
The development of signal unmixing algorithms is essential for leveraging multimodal datasets acquired through a wide array of scientific im… (see more)aging technologies, including hyperspectral or time-resolved acquisitions. In experimental physics, enhancing the spatio-temporal resolution or expanding the number of detection channels often leads to diminished sampling rate and signal-to-noise ratio (SNR), significantly affecting the efficacy of signal unmixing algorithms. We propose Latent Unmixing, a new approach which applies band-pass filters to the latent space of a multi-dimensional convolutional neural network to disentangle overlapping signal components. It enables better isolation and quantification of individual signal contributions, especially in the context of undersampled distributions. Using multi-dimensional convolution kernels to process all dimensions simultaneously enhances the network's ability to extract information from adjacent pixels, and time- or spectral-bins. This approach enables more effective separation of components in cases where individual pixels do not provide clear, well-resolved information. We showcase the method's practical use in experimental physics through two test cases that highlight the versatility of our approach: fluorescence lifetime microscopy and mode decomposition in optical fibers. The latent unmixing method extracts valuable information from complex signals that cannot be resolved by standard methods. It opens new possibilities in optics and photonics for multichannel separations at an increased sampling rate.
Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition
Theresa Wiesner
Andréanne Deschênes
Anthony Bilodeau
Benoit Turcotte
Chronic Stress Exposure Alters the Gut Barrier: Sex-Specific Effects on Microbiota and Jejunum Tight Junctions
Ellen Doney
Laurence Dion-Albert
Francois Coulombe-Rozon
Natasha Osborne
Renaud Bernatchez
Sam E.J. Paton
Fernanda Neutzling Kaufmann
Roseline Olory Agomma
José L. Solano
Raphael Gaumond
Katarzyna A. Dudek
Joanna Kasia Szyszkowicz
Manon Lebel
Alain Doyen
Marie-Claude Audet
Caroline Menard