Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Massive Extremely High-Velocity Outflow in the Quasar J164653.72+243942.2
Federated learning enables collaborative model training across numerous edge devices without requiring participants to share data; however, … (voir plus)memory and communication constraints on these edge devices may preclude their participation in training. We consider a setting in which a subset of edge devices are below a critical memory or communication threshold required to conduct model updates. Under typical federated optimization algorithms, these devices are excluded from training which renders their data inaccessible and increases system induced bias. We are inspired by MeZO, a zeroth-order method used for memory-efficient fine-tuning. The increased variance inherent to zeroth-order gradient approximations has relegated previous zeroth-order optimizers exclusively to the domain of fine tuning; a limitation we seek to correct. We devise a federated, memory-efficient zeroth-order optimizer, ZOWarmUp that permits zeroth-order training from a random initialization. ZOWarmUp leverages differing client capabilities and careful variance reduction techniques to facilitate participation of under-represented, low-resource clients in model training. Like other federated zeroth-order methods, ZOWarmUp eliminates the need for edge devices to transmit their full gradients to the server and instead relies on only a small set of random seeds, rendering the up-link communication cost negligible. We present experiments using various datasets and model architectures to show that ZOWarmUp is a robust algorithm that can can be applied under a wide variety of circumstances. For systems with a high proportion of edge devices that would otherwise be excluded from training, this algorithm provides access to a greater volume and diversity of data, thus improving training outcomes.
We describe a publicly available multimodal dataset of annotated Positron Emission Tomography/Computed Tomography (PET/CT) studies for head … (voir plus)and neck cancer research. The dataset includes 1123 FDG-PET/CT studies from patients with histologically confirmed head and neck cancer, acquired from 10 international medical centers. All examinations consisted of co-registered PET/CT scans with varying acquisition protocols, reflecting real-world clinical diversity across institutions. Primary gross tumor volumes (GTVp) and involved lymph nodes (GTVn) were manually segmented by experienced radiation oncologists and radiologists following standardized guidelines and quality control measures. We provide anonymized NifTi files of all studies, along with expert-annotated segmentation masks, radiotherapy dose distribution for a subset of patients, and comprehensive clinical metadata. This metadata includes TNM staging, HPV status, demographics (age and gender), long-term follow-up outcomes, survival times, censoring indicators, and treatment information. We demonstrate how this dataset can be used for three key clinical tasks: automated tumor segmentation, recurrence-free survival prediction, and HPV status classification, providing benchmark results using state-of-the-art deep learning models, including UNet, SegResNet, and multimodal prognostic frameworks.
We describe a publicly available multimodal dataset of annotated Positron Emission Tomography/Computed Tomography (PET/CT) studies for head … (voir plus)and neck cancer research. The dataset includes 1123 FDG-PET/CT studies from patients with histologically confirmed head and neck cancer, acquired from 10 international medical centers. All examinations consisted of co-registered PET/CT scans with varying acquisition protocols, reflecting real-world clinical diversity across institutions. Primary gross tumor volumes (GTVp) and involved lymph nodes (GTVn) were manually segmented by experienced radiation oncologists and radiologists following standardized guidelines and quality control measures. We provide anonymized NifTi files of all studies, along with expert-annotated segmentation masks, radiotherapy dose distribution for a subset of patients, and comprehensive clinical metadata. This metadata includes TNM staging, HPV status, demographics (age and gender), long-term follow-up outcomes, survival times, censoring indicators, and treatment information. We demonstrate how this dataset can be used for three key clinical tasks: automated tumor segmentation, recurrence-free survival prediction, and HPV status classification, providing benchmark results using state-of-the-art deep learning models, including UNet, SegResNet, and multimodal prognostic frameworks.
Hierarchical reinforcement learning (RL) has the potential to enable effective decision-making over long timescales. Existing approaches, wh… (voir plus)ile promising, have yet to realize the benefits of large-scale training. In this work, we identify and solve several key challenges in scaling hierarchical RL to high-throughput environments. We propose Scalable Option Learning (SOL), a highly scalable hierarchical RL algorithm which achieves a 25x higher throughput compared to existing hierarchical methods. We train our hierarchical agents using 20 billion frames of experience on the complex game of NetHack, significantly surpassing flat agents and demonstrating positive scaling trends. We also validate our algorithm on MiniHack and Mujoco environments, showcasing its general applicability. Our code is open sourced at github.com/facebookresearch/sol.