Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relations les responsables des politiques avec un groupe d’expert·e·s en IA pour discuter librement de leurs défis en matière d'IA et de politique.
Joignez-vous à nous le 17 avril pour notre conférence annuelle d'une journée sur la recherche en IA, mettant en vedette les chercheur·euse·s de Mila et des conférencier·ère·s de renom, au profit de Centraide du Grand Montréal.
Développement du groupe d'experts de l'ONU sur l'IA
Mila a récemment réuni des expert·e·s de renom pour discuter de la création d’un groupe indépendant sur l’IA pour l’ONU. Ce document propose des recommandations clés pour assurer son indépendance et sa légitimité.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Information Gain Sampling for Active Learning in Medical Image Classification
Resampling is the process of selecting from a set of candidate samples to achieve a distribution (approximately) proportional to a desired t… (voir plus)arget. Recent work has revisited its application to Monte Carlo integration, yielding powerful and practical importance sampling methods. One drawback of existing resampling methods is that they cannot generate stratified samples. We propose two complementary techniques to achieve efficient stratified resampling. We first introduce bidirectional CDF sampling which yields the same result as conventional inverse CDF sampling but in a single pass over the candidates, without needing to store them, similarly to reservoir sampling. We then order the candidates along a space‐filling curve to ensure that stratified CDF sampling of candidate indices yields stratified samples in the integration domain. We showcase our method on various resampling‐based rendering problems.
To combat the increasingly versatile and mutable modern malware, Machine Learning (ML) is now a popular and effective complement to the exis… (voir plus)ting signature-based techniques for malware triage and identification. However, ML is also a readily available tool for adversaries. Recent studies have shown that malware can be modified by deep Reinforcement Learning (RL) techniques to bypass AI-based and signature-based anti-virus systems without altering their original malicious functionalities. These studies only focus on generating evasive samples and assume a static detection system as the enemy.Malware detection and evasion essentially form a two-party cat-and-mouse game. Simulating the real-life scenarios, in this paper we present the first two-player competitive game for evasive malware detection and generation, following the zero-sum Multi-Agent Reinforcement Learning (MARL) paradigm. Our experiments on recent malware show that the produced malware detection agent is more robust against adversarial attacks. Also, the produced malware modification agent is able to generate more evasive samples fooling both AI-based and other anti-malware techniques.
Adoption of recently developed methods from machine learning has given rise to creation of drug-discovery knowledge graphs (KGs) that utiliz… (voir plus)e the interconnected nature of the domain. Graph-based modelling of the data, combined with KG embedding (KGE) methods, are promising as they provide a more intuitive representation and are suitable for inference tasks such as predicting missing links. One common application is to produce ranked lists of genes for a given disease, where the rank is based on the perceived likelihood of association between the gene and the disease. It is thus critical that these predictions are not only pertinent but also biologically meaningful. However, KGs can be biased either directly due to the underlying data sources that are integrated or due to modelling choices in the construction of the graph, one consequence of which is that certain entities can get topologically overrepresented. We demonstrate the effect of these inherent structural imbalances, resulting in densely connected entities being highly ranked no matter the context. We provide support for this observation across different datasets, models as well as predictive tasks. Further, we present various graph perturbation experiments which yield more support to the observation that KGE models can be more influenced by the frequency of entities rather than any biological information encoded within the relations. Our results highlight the importance of data modelling choices, and emphasizes the need for practitioners to be mindful of these issues when interpreting model outputs and during KG composition.
In this paper, we propose revisited versions for two recent hotel recognition datasets: Hotels-50K and Hotel-ID. The revisited versions prov… (voir plus)ide evaluation setups with different levels of difficulty to better align with the intended real-world application, i.e. countering human trafficking. Real-world scenarios involve hotels and locations that are not captured in the current data sets, therefore it is important to consider evaluation settings where classes are truly unseen. We test this setup using multiple state-of-the-art image retrieval models and show that as expected, the models’ performances decrease as the evaluation gets closer to the real-world unseen settings. The rankings of the best performing models also change across the different evaluation settings, which further motivates using the proposed revisited datasets.
User forums of Open Source Software (OSS) enable end-users to collaboratively discuss problems concerning the OSS applications. Despite deca… (voir plus)des of research on OSS, we know very little about how end-users engage with OSS communities on these forums, in particular, the challenges that hinder their continuous and meaningful participation in the OSS community. Many previous works are developer-centric and overlook the importance of end-user forums. As a result, end-users' expectations are seldom reflected in OSS development. To better understand user behaviors in OSS user forums, we carried out an empirical study analyzing about 1.3 million posts from user forums of four popular OSS applications: Zotero, Audacity, VLC, and RStudio. Through analyzing the contribution patterns of three common user types (end-users, developers, and organizers), we observed that end-users not only initiated most of the threads (above 96% of threads in three projects, 86% in the other), but also acted as the significant contributors for responding to other users' posts, even though they tended to lack confidence in their activities as indicated by psycho-linguistic analyses. Moreover, we found end-users more open, reflecting a more positive emotion in communication than organizers and developers in the forums. Our work contributes new knowledge about end-users' activities and behaviors in OSS user forums that the vital OSS stakeholders can leverage to improve end-user engagement in the OSS development process.
2022-07-19
Proceedings of the 15th International Conference on Cooperative and Human Aspects of Software Engineering (publié)
Near-Optimal Glimpse Sequences for Improved Hard Attention Neural Network Training
William Harvey
Michael Teng
Frank D. Wood
Hard visual attention is a promising approach to reduce the computational burden of modern computer vision methodologies. However, hard atte… (voir plus)ntion mechanisms can be difficult and slow to train, which is especially costly for applications like neural architecture search where multiple networks must be trained. We introduce a method to amortise the cost of training by generating an extra supervision signal for a subset of the training data. This supervision is in the form of sequences of ‘good’ locations to attend to for each image. We find that the best method to generate supervision sequences comes from framing hard attention for image classification as a Bayesian optimal experimental design (BOED) problem. From this perspective, the optimal locations to attend to are those which provide the greatest expected reduction in the entropy of the classification distribution. We introduce methodology from the BOED literature to approximate this optimal behaviour and generate ‘near-optimal’ supervision sequences. We then present a hard attention network training objective that makes use of these sequences and show that it allows faster training than prior work. We finally demonstrate the utility of faster hard attention training by incorporating supervision sequences in a neural architecture search, resulting in hard attention architectures which can outperform networks with access to the entire image.
2022-07-18
2022 International Joint Conference on Neural Networks (IJCNN) (publié)