Publications

Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Leo J Lee
Alexander Tong
Kirill Neklyudov
Numerous biological and physical processes can be modeled as systems of interacting samples evolving continuously over time, e.g. the dynami… (voir plus)cs of communicating cells or physical particles. Flow-based models allow for learning these dynamics at the population level --- they model the evolution of the entire distribution of samples. However, current flow-based models are limited to a single initial population and a set of predefined conditions which describe different dynamics. We propose
Neural Ratio Estimators Meet Distributional Shift and Mode Misspecification: A Cautionary Tale from Strong Gravitational Lensing
In recent years, there has been increasing interest in the field of astrophysics in applying Neural Ratio Estimators (NREs) to large-scale i… (voir plus)nference problems where both amortization and marginalization over a large number of nuisance parameters are needed. Here, in order to assess the true potential of this method to produce unbiased inference on real data, we investigate the robustness of NREs to distribution shifts and model misspecification in the specific scientific application of the measurement of dark matter population-level parameters using strong gravitational lensing. We investigate the behaviour of a trained NRE for test data presenting distributional shifts inside the bounds of training, as well as out of distribution, both in the linear and non-linear parameters of this problem. While our results show that NREs perform when tested perfectly in distribution, we find that they exhibit significant biases and drawbacks when confronted with slight deviations from the examples seen in the training distribution. This indicates the necessity for caution when applying NREs to real astrophysical data, where underlying distributions are not perfectly known and models do not perfectly reconstruct the true underlying distributions.
QGFN: Controllable Greediness with Action Values
Elaine Lau
Stephen Zhewen Lu
Ling Pan
Emmanuel Bengio
Generative Flow Networks (GFlowNets; GFNs) are a family of reward/energy-based generative methods for combinatorial objects, capable of gene… (voir plus)rating diverse and high-utility samples. However, biasing GFNs towards producing high-utility samples is non-trivial. In this work, we leverage connections between GFNs and reinforcement learning (RL) and propose to combine the GFN policy with an action-value estimate,
Reframing linguistic bootstrapping as joint inference using visually-grounded grammar induction models
Eva Portelance
Timothy John O'donnell
Semantic and syntactic bootstrapping posit that children use their prior knowledge of one linguistic domain, say syntactic relations, to hel… (voir plus)p later acquire another, such as the meanings of new words. Empirical results supporting both theories may tempt us to believe that these are different learning strategies, where one may precede the other. Here, we argue that they are instead both contingent on a more general learning strategy for language acquisition: joint learning. Using a series of neural visually-grounded grammar induction models, we demonstrate that both syntactic and semantic bootstrapping effects are strongest when syntax and semantics are learnt simultaneously. Joint learning results in better grammar induction, realistic lexical category learning, and better interpretations of novel sentence and verb meanings. Joint learning makes language acquisition easier for learners by mutually constraining the hypotheses spaces for both syntax and semantics. Studying the dynamics of joint inference over many input sources and modalities represents an important new direction for language modeling and learning research in both cognitive sciences and AI, as it may help us explain how language can be acquired in more constrained learning settings.
RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content
Joao Monteiro
Pierre-Andre Noel
Étienne Marcotte
Sai Rajeswar
Valentina Zantedeschi
David Vazquez
Perouz Taslakian
Large Language Models (LLMs) are trained on vast amounts of data, most of which is automatically scraped from the internet. This data includ… (voir plus)es encyclopedic documents that harbor a vast amount of general knowledge (e.g., Wikipedia) but also potentially overlap with benchmark datasets used for evaluating LLMs. Consequently, evaluating models on test splits that might have leaked into the training set is prone to misleading conclusions. To foster sound evaluation of language models, we introduce a new test dataset named RepLiQA, suited for question-answering and topic retrieval tasks. RepLiQA is a collection of five splits of test sets, four of which have not been released to the internet or exposed to LLM APIs prior to this publication. Each sample in RepLiQA comprises (1) a reference document crafted by a human annotator and depicting an imaginary scenario (e.g., a news article) absent from the internet; (2) a question about the document's topic; (3) a ground-truth answer derived directly from the information in the document; and (4) the paragraph extracted from the reference document containing the answer. As such, accurate answers can only be generated if a model can find relevant content within the provided document. We run a large-scale benchmark comprising several state-of-the-art LLMs to uncover differences in performance across models of various types and sizes in a context-conditional language modeling setting. Released splits of RepLiQA can be found here: https://huggingface.co/datasets/ServiceNow/repliqa.
Revisiting Successor Features for Inverse Reinforcement Learning
Arnav Kumar Jain
Harley Wiltzer
Jesse Farebrother
Sanjiban Choudhury
RGFN: Synthesizable Molecular Generation Using GFlowNets
Michał Koziarski
Andrei Rekesh
Dmytro Shevchuk
Almer M. van der Sloot
Piotr Gaiński
Cheng-Hao Liu
Mike Tyers
Robert A. Batey
On The Local Geometry of Deep Generative Manifolds
Ahmed Imtiaz Humayun
Ibtihel Amara
Candice Schumann
Mohammad Havaei
In this paper, we study theoretically inspired local geometric descriptors of the data manifolds approximated by pre-trained generative mode… (voir plus)ls. The descriptors – local scaling (ψ), local rank (ν), and local complexity (δ) — characterize the uncertainty, dimensionality, and smoothness on the learned manifold, using only the network weights and architecture. We investigate and emphasize their critical role in understanding generative models. Our analysis reveals that the local geometry is intricately linked to the quality and diversity of generated outputs. Additionally, we see that the geometric properties are distinct for out-of-distribution (OOD) inputs as well as for prompts memorized by Stable Diffusion, showing the possible application of our proposed descriptors for downstream detection and assessment of pre-trained generative models.
Using neural biomarkers to personalize dosing of vagus nerve stimulation
Antonin Berthon
Lorenz Wernisch
Myrta Stoukidi
Michael Thornton
Olivier Tessier-Lariviere
Pascal Fortier-Poisson
Jorin Mamen
Max Pinkney
Susannah Lee
Elvijs Sarkans
Luca Annecchino
Ben Appleton
Philip Garsed
Bret Patterson
Samuel Gonshaw
Matjaž Jakopec
Sudhakaran Shunmugam
Tristan Edwards
Aleksi Tukiainen
Joel Jennings … (voir 3 de plus)
Emil Hewage
Oliver Armitage
Cell Morphology-Guided Small Molecule Generation with GFlowNets
Stephen Zhewen Lu
Ziqing Lu
Ehsan Hajiramezanali
Tommaso Biancalani
Gabriele Scalia
Michał Koziarski
Contrasting Intra-Modal and Ranking Cross-Modal Hard Negatives to Enhance Visio-Linguistic Compositional Understanding
Le Zhang
Rabiul Awal
Vision-Language Models (VLMs), such as CLIP, exhibit strong image-text comprehension abilities, facilitating advances in several downstream … (voir plus)tasks such as zero-shot image classification, image-text retrieval, and text-to-image generation. However, the compositional reasoning abilities of existing VLMs remains subpar. The root of this limitation lies in the inadequate alignment between the images and captions in the pretraining datasets. Additionally, the current contrastive learning objective fails to focus on fine-grained grounding components like relations, actions, and attributes, resulting in"bag-of-words"representations. We introduce a simple and effective method to improve compositional reasoning in VLMs. Our method better leverages available datasets by refining and expanding the standard image-text contrastive learning framework. Our approach does not require specific annotations and does not incur extra parameters. When integrated with CLIP, our technique yields notable improvement over state-of-the-art baselines across five vision-language compositional benchmarks. We open-source our code at https://github.com/lezhang7/Enhance-FineGrained.
Expressivity of Neural Networks with Fixed Weights and Learned Biases
Ezekiel Williams
Avery Hee-Woon Ryoo
Thomas Jiralerspong
Alexandre Payeur
Luca Mazzucato