Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Probabilistic surrogate networks for simulators with unbounded randomness
We present a framework for automatically structuring and training fast, approximate, deep neural surrogates of stochastic simulators. Unlike… (voir plus) traditional approaches to surrogate modeling, our surrogates retain the interpretable structure and control flow of the reference simulator. Our surrogates target stochastic simulators where the number of random variables itself can be stochastic and potentially unbounded. Our framework further enables an automatic replacement of the reference simulator with the surrogate when undertaking amortized inference. The fidelity and speed of our surrogates allow for both faster stochastic simulation and accurate and substantially faster posterior inference. Using an illustrative yet non-trivial example we show our surrogates' ability to accurately model a probabilistic program with an unbounded number of random variables. We then proceed with an example that shows our surrogates are able to accurately model a complex structure like an unbounded stack in a program synthesis example. We further demonstrate how our surrogate modeling technique makes amortized inference in complex black-box simulators an order of magnitude faster. Specifically, we do simulator-based materials quality testing, inferring safety-critical latent internal temperature profiles of composite materials undergoing curing.
In the main tables of the paper, we did not include the performances of α-TIM in the standard balanced setting. Here, we emphasize that α-… (voir plus)TIM is a generalization of TIM [1] as when α → 1 (i.e., the α-entropies tend to the Shannon entropies), α-TIM tends to TIM. Therefore, in the standard setting, where optimal hyper-parameter α is obtained over validation tasks that are balanced (as in the standard validation tasks of the original TIM and the other existing methods), the performance of α-TIM is the same as TIM. When α is tuned on balanced validation tasks, we obtain an optimal value of α very close to 1, and our α-mutual information approaches the standard mutual information. When the validation tasks are uniformly random, as in our new setting and in the validation plots we provided in the main figure, one can see that the performance of α-TIM remains competitive when we tend to balanced testing tasks (i.e., when a is increasing), but is significantly better than TIM when we tend to uniformly-random testing tasks (a = 1). These results illustrate the flexibility of α-divergences, and are in line with the technical analysis provided in the main paper.
We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer with linear complexity and state-of-the-art result… (voir plus)s on a diverse set of benchmarks. Graph Transformers (GTs) have gained popularity in the field of graph representation learning with a variety of recent publications but they lack a common foundation about what constitutes a good positional or structural encoding, and what differentiates them. In this paper, we summarize the different types of encodings with a clearer definition and categorize them as being
Reinforcement learning (RL) agents need to be robust to variations in safety-critical environments. While system identification methods prov… (voir plus)ide a way to infer the variation from online experience, they can fail in settings where fast identification is not possible. Another dominant approach is robust RL which produces a policy that can handle worst-case scenarios, but these methods are generally designed to achieve robustness to a single uncertainty set that must be specified at train time. Towards a more general solution, we formulate the multi-set robustness problem to learn a policy robust to different perturbation sets. We then design an algorithm that enjoys the benefits of both system identification and robust RL: it reduces uncertainty where possible given a few interactions, but can still act robustly with respect to the remaining uncertainty. On a diverse set of control tasks, our approach demonstrates improved worst-case performance on new environments compared to prior methods based on system identification and on robust RL alone.
In this article, we consider the problem of allocating human operators in a system with multiple semiautonomous robots. Each robot is requir… (voir plus)ed to perform an independent sequence of tasks, subject to a chance of failing and getting stuck in a fault state at every task. If and when required, a human operator can assist or teleoperate a robot. Conventional dynamic programming-based techniques used to solve such problems face scalability issues due to an exponential growth of state and action spaces with the number of robots and operators. In this article, we derive conditions under which the operator allocation problem satisfies a technical condition called indexability, thereby enabling the use of the Whittle index heuristic. The conditions are easy to check, and we show that they hold for a wide range of problems of interest. Our key insight is to leverage the structure of the value function of individual robots, resulting in conditions that can be verified separately for each state of each robot. We apply these conditions to two types of transitions commonly seen in remote robot supervision systems. Through numerical simulations, we demonstrate the efficacy of Whittle index policy as a near-optimal and scalable approach that outperforms existing scalable methods.
2022-01-01
IEEE Transactions on Control of Network Systems (publié)