Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Injury and violence in the context of sustainable development
In this work, we present a new unsupervised anomaly (outlier) detection (AD) method using the sliced-Wasserstein metric. This filtering tech… (voir plus)nique is conceptually interesting for MLOps pipelines deploying machine learning models in critical sectors, e.g., energy, as it offers a conservative data selection. Additionally, we open the first dataset showcasing localized critical peak rebate demand response in a northern climate. We demonstrate the capabilities of our method on synthetic datasets as well as standard AD datasets and use it in the making of a first benchmark for our open-source localized critical peak rebate dataset.
With growing application of machine learning (ML) technologies in healthcare, there have been calls for developing techniques to understand … (voir plus)and mitigate biases these systems may exhibit. Fair-ness considerations in the development of ML-based solutions for health have particular implications for Africa, which already faces inequitable power imbalances between the Global North and South.This paper seeks to explore fairness for global health, with Africa as a case study. We conduct a scoping review to propose axes of disparities for fairness consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 672 general population study participants and 28 experts inML, health, and policy focused on Africa to obtain corroborative evidence on the proposed axes of disparities. Our analysis focuses on colonialism as the attribute of interest and examines the interplay between artificial intelligence (AI), health, and colonialism. Among the pre-identified attributes, we found that colonial history, country of origin, and national income level were specific axes of disparities that participants believed would cause an AI system to be biased.However, there was also divergence of opinion between experts and general population participants. Whereas experts generally expressed a shared view about the relevance of colonial history for the development and implementation of AI technologies in Africa, the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism. Based on these findings, we provide practical recommendations for developing fairness-aware ML solutions for health in Africa.
2024-10-29
Proceedings of the 4th ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (publié)
Data curation is a field with origins in librarianship and archives, whose scholarship and thinking on data issues go back centuries, if not… (voir plus) millennia. The field of machine learning is increasingly observing the importance of data curation to the advancement of both applications and fundamental understanding of machine learning models - evidenced not least by the creation of the Datasets and Benchmarks track itself. This work provides an analysis of dataset development practices at NeurIPS through the lens of data curation. We present an evaluation framework for dataset documentation, consisting of a rubric and toolkit developed through a literature review of data curation principles. We use the framework to assess the strengths and weaknesses in current dataset development practices of 60 datasets published in the NeurIPS Datasets and Benchmarks track from 2021-2023. We summarize key findings and trends. Results indicate greater need for documentation about environmental footprint, ethical considerations, and data management. We suggest targeted strategies and resources to improve documentation in these areas and provide recommendations for the NeurIPS peer-review process that prioritize rigorous data curation in ML. Finally, we provide results in the format of a dataset that showcases aspects of recommended data curation practices. Our rubric and results are of interest for improving data curation practices broadly in the field of ML as well as to data curation and science and technology studies scholars studying practices in ML. Our aim is to support continued improvement in interdisciplinary research on dataset practices, ultimately improving the reusability and reproducibility of new datasets and benchmarks, enabling standardized and informed human oversight, and strengthening the foundation of rigorous and responsible ML research.
Given two sets of elements (such as cell types and drug compounds), researchers typically only have access to a limited subset of their inte… (voir plus)ractions. The task of causal imputation involves using this subset to predict unobserved interactions. Squires et al. (2022) have proposed two estimators for this task based on the synthetic interventions (SI) estimator: SI-A (for actions) and SI-C (for contexts). We extend their work and introduce a novel causal imputation estimator, generalized synthetic interventions (GSI). We prove the identifiability of this estimator for data generated from a more complex latent factor model. On synthetic and real data we show empirically that it recovers or outperforms their estimators.