A benchmark of individual auto-regressive models in a massive fMRI dataset
Fraçois Paugam
Basile Pinsard
Abstract Dense functional magnetic resonance imaging datasets open new avenues to create auto-regressive models of brain activity. Individua… (voir plus)l idiosyncrasies are obscured by group models, but can be captured by purely individual models given sufficient amounts of training data. In this study, we compared several deep and shallow individual models on the temporal auto-regression of BOLD time-series recorded during a natural video-watching task. The best performing models were then analyzed in terms of their data requirements and scaling, subject specificity, and the space-time structure of their predicted dynamics. We found the Chebnets, a type of graph convolutional neural network, to be best suited for temporal BOLD auto-regression, closely followed by linear models. Chebnets demonstrated an increase in performance with increasing amounts of data, with no complete saturation at 9 h of training data. Good generalization to other kinds of video stimuli and to resting-state data marked the Chebnets’ ability to capture intrinsic brain dynamics rather than only stimulus-specific autocorrelation patterns. Significant subject specificity was found at short prediction time lags. The Chebnets were found to capture lower frequencies at longer prediction time lags, and the spatial correlations in predicted dynamics were found to match traditional functional connectivity networks. Overall, these results demonstrate that large individual functional magnetic resonance imaging (fMRI) datasets can be used to efficiently train purely individual auto-regressive models of brain activity, and that massive amounts of individual data are required to do so. The excellent performance of the Chebnets likely reflects their ability to combine spatial and temporal interactions on large time scales at a low complexity cost. The non-linearities of the models did not appear as a key advantage. In fact, surprisingly, linear versions of the Chebnets appeared to outperform the original non-linear ones. Individual temporal auto-regressive models have the potential to improve the predictability of the BOLD signal. This study is based on a massive, publicly-available dataset, which can serve for future benchmarks of individual auto-regressive modeling.
Deep learning based vessel arrivals monitoring via autoregressive statistical control charts
Sara El Mekkaoui
Ghait Boukachab
Abdelaziz Berrado
Deep learning based vessel arrivals monitoring via autoregressive statistical control charts
Sara El Mekkaoui
Ghait Boukachab
Abdelaziz Berrado
Imagining a Future of Designing with AI: Dynamic Grounding, Constructive Negotiation, and Sustainable Motivation
Priyan Vaithilingam
Elena L. Glassman
Do LLMs Meet the Needs of Software Tutorial Writers? Opportunities and Design Implications
Avinash Bhat
Disha Shrivastava
Creating software tutorials involves developing accurate code examples and explanatory text that engages and informs the reader. Large Langu… (voir plus)age Models (LLMs) demonstrate a strong capacity to generate both text and code, but their potential to assist tutorial writing is unknown. By interviewing and observing seven experienced writers using OpenAI playground as an exploration environment, we uncover design opportunities for leveraging LLMs in software tutorial writing. Our findings reveal background research, resource creation, and maintaining quality standards as critical areas where LLMs could significantly assist writers. We observe how tutorial writers generated tutorial content while exploring LLMs’ capabilities, formulating prompts, verifying LLM outputs, and reflecting on interaction goals and strategies. Our observation highlights that the unpredictability of LLM outputs and unintuitive interface design contributed to skepticism about LLM’s utility. Informed by these results, we contribute recommendations for designing LLM-based tutorial writing tools to mitigate usability challenges and harness LLMs’ full potential.
A logistics provider’s profit maximization facility location problem with random utility maximizing followers
David Pinzon Ulloa
Bernard Gendron
Motivating Users to Attend to Privacy: A Theory-Driven Design Study
Varun Shiri
Maggie Xiong
Jinghui Cheng
In modern technology environments, raising users’ privacy awareness is crucial. Existing efforts largely focused on privacy policy present… (voir plus)ation and failed to systematically address a radical challenge of user motivation for initiating privacy awareness. Leveraging the Protection Motivation Theory (PMT), we proposed design ideas and categories dedicated to motivating users to engage with privacy-related information. Using these design ideas, we created a conceptual prototype, enhancing the current App Store product page. Results from an online experiment and follow-up interviews showed that our design effectively motivated participants to attend to privacy issues, raising both the threat appraisal and coping appraisal, two main factors in PMT. Our work indicated that effective design should consider combining PMT components, calibrating information content, and integrating other design elements, such as visual cues and user familiarity. Overall, our study contributes valuable design considerations driven by the PMT to amplify the motivational aspect of privacy communication.
Normalization and effective learning rates in reinforcement learning
Clare Lyle
Zeyu Zheng
James Martens
Hado van Hasselt
Will Dabney
Normalization layers have recently experienced a renaissance in the deep reinforcement learning and continual learning literature, with seve… (voir plus)ral works highlighting diverse benefits such as improving loss landscape conditioning and combatting overestimation bias. However, normalization brings with it a subtle but important side effect: an equivalence between growth in the norm of the network parameters and decay in the effective learning rate. This becomes problematic in continual learning settings, where the resulting effective learning rate schedule may decay to near zero too quickly relative to the timescale of the learning problem. We propose to make the learning rate schedule explicit with a simple re-parameterization which we call Normalize-and-Project (NaP), which couples the insertion of normalization layers with weight projection, ensuring that the effective learning rate remains constant throughout training. This technique reveals itself as a powerful analytical tool to better understand learning rate schedules in deep reinforcement learning, and as a means of improving robustness to nonstationarity in synthetic plasticity loss benchmarks along with both the single-task and sequential variants of the Arcade Learning Environment. We also show that our approach can be easily applied to popular architectures such as ResNets and transformers while recovering and in some cases even slightly improving the performance of the base model in common stationary benchmarks.
Normalization and effective learning rates in reinforcement learning
Clare Lyle
Zeyu Zheng
James Martens
Hado van Hasselt
Will Dabney
Normalization layers have recently experienced a renaissance in the deep reinforcement learning and continual learning literature, with seve… (voir plus)ral works highlighting diverse benefits such as improving loss landscape conditioning and combatting overestimation bias. However, normalization brings with it a subtle but important side effect: an equivalence between growth in the norm of the network parameters and decay in the effective learning rate. This becomes problematic in continual learning settings, where the resulting effective learning rate schedule may decay to near zero too quickly relative to the timescale of the learning problem. We propose to make the learning rate schedule explicit with a simple re-parameterization which we call Normalize-and-Project (NaP), which couples the insertion of normalization layers with weight projection, ensuring that the effective learning rate remains constant throughout training. This technique reveals itself as a powerful analytical tool to better understand learning rate schedules in deep reinforcement learning, and as a means of improving robustness to nonstationarity in synthetic plasticity loss benchmarks along with both the single-task and sequential variants of the Arcade Learning Environment. We also show that our approach can be easily applied to popular architectures such as ResNets and transformers while recovering and in some cases even slightly improving the performance of the base model in common stationary benchmarks.
One-shot Learning for MIPs with SOS1 Constraints
Charly Robinson La Rocca
Jean-François Cordeau
Surface water temperature observations and ice phenology estimations for 1.4 million lakes globally
Maartje C. Korver
Bernhard Lehner
Laura Carrea
Surface water temperature observations and ice phenology estimations for 1.4 million lakes globally
Maartje C. Korver
Bernhard Lehner
Laura Carrea