Peu importe la taille : démocratiser la découverte de protéines avec l'IA
Des chercheurs de Mila ont créé un puissant modèle de langage protéique à source ouverte plus compact et efficace afin de démocratiser la découverte de protéines.
La prochaine cohorte de notre programme, conçu pour fournir aux participant·e·s une compréhension fondamentale des technologies de l'IA, se déroulera à Ottawa les 28 et 29 novembre.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Structure-based protein design has attracted increasing interest, with numerous methods being introduced in recent years.
However, a univers… (voir plus)ally accepted method for evaluation has not been established, since the wet-lab validation can be overly time-consuming for the development of new algorithms, and the
Structure-based protein design has attracted increasing interest, with numerous methods being introduced in recent years.
However, a univers… (voir plus)ally accepted method for evaluation has not been established, since the wet-lab validation can be overly time-consuming for the development of new algorithms, and the
The scattering transform is a multilayered wavelet-based deep learning architecture that acts as a model of convolutional neural networks. R… (voir plus)ecently, several works have introduced generalizations of the scattering transform for non-Euclidean settings such as graphs. Our work builds upon these constructions by introducing windowed and non-windowed geometric scattering transforms for graphs based upon a very general class of asymmetric wavelets. We show that these asymmetric graph scattering transforms have many of the same theoretical guarantees as their symmetric counterparts. As a result, the proposed construction unifies and extends known theoretical results for many of the existing graph scattering architectures. In doing so, this work helps bridge the gap between geometric scattering and other graph neural networks by introducing a large family of networks with provable stability and invariance guarantees. These results lay the groundwork for future deep learning architectures for graph-structured data that have learned filters and also provably have desirable theoretical properties.
2023-10-25
SIAM Journal on Mathematics of Data Science (publié)
Problem definition: In this paper, we study a predisaster relief network design problem with uncertain demands. The aim is to determine the … (voir plus)prepositioning and reallocation of relief supplies. Motivated by the call of the International Federation of Red Cross and Red Crescent Societies (IFRC) to leave no one behind, we consider three important practical aspects of humanitarian operations: shortages, equity, and uncertainty. Methodology/results: We first employ a form of robust satisficing measure, which we call the shortage severity measure, to evaluate the severity of the shortage caused by uncertain demand in a context with limited distribution information. Because shortages often raise concerns about equity, we then formulate a mixed-integer lexicographic optimization problem with nonconvex objectives and design a new branch-and-bound algorithm to identify the exact solution. We also propose two approaches for identifying optimal postdisaster adaptable resource reallocation: an exact approach and a conservative approximation that is more computationally efficient. Our case study considers the 2010 Yushu earthquake, which occurred in northwestern China, and demonstrates the value of our methodology in mitigating geographical inequities and reducing shortages. Managerial implications: In our case study, we show that (i) incorporating equity in both predisaster deployment and postdisaster reallocation can produce substantially more equitable shortage prevention strategies while sacrificing only a reasonable amount of total shortage; (ii) increasing donations/budgets may not necessarily alleviate the shortage suffered by the most vulnerable individuals if equity is not fully considered; and (iii) exploiting disaster magnitude information when quantifying uncertainty can help alleviate geographical inequities caused by uncertain relief demands. Funding: This work was supported by the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2016-05208], the National Natural Science Foundation of China [Grants 71971154, 72010107004, 72091214, and 72122015], and the Canada Research Chairs [Grant CRC-2018-00105]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2023.1230 .
2023-10-23
Manufacturing & Service Operations Management (publié)