Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Current Practices in Voice Data Collection and Limitations to Voice AI Research: A National Survey.
Emily Evangelista
Rohan Kale
Desiree McCutcheon
Anais Rameau
Alexander Gelbard
Maria Powell
Michael Johns
Anthony Law
Phillip Song
Matthew Naunheim
Stephanie Watts
Paul C. Bryson
Matthew G. Crowson
Jeremy Pinto
Yael Bensoussan
INTRODUCTION
Accuracy and validity of voice AI algorithms rely on substantial quality voice data. Although commensurable amounts of voice da… (voir plus)ta are captured daily in voice centers across North America, there is no standardized protocol for acoustic data management, which limits the usability of these datasets for voice artificial intelligence (AI) research.
OBJECTIVE
The aim was to capture current practices of voice data collection, storage, analysis, and perceived limitations to collaborative voice research.
METHODS
A 30-question online survey was developed with expert guidance from the voicecollab.ai members, an international collaborative of voice AI researchers. The survey was disseminated via REDCap to an estimated 200 practitioners at North American voice centers. Survey questions assessed respondents' current practices in terms of acoustic data collection, storage, and retrieval as well as limitations to collaborative voice research.
RESULTS
Seventy-two respondents completed the survey of which 81.7% were laryngologists and 18.3% were speech language pathologists (SLPs). Eighteen percent of respondents reported seeing 40%-60% and 55% reported seeing >60 patients with voice disorders weekly (conservative estimate of over 4000 patients/week). Only 28% of respondents reported utilizing standardized protocols for collection and storage of acoustic data. Although, 87% of respondents conduct voice research, only 38% of respondents report doing so on a multi-institutional level. Perceived limitations to conducting collaborative voice research include lack of standardized methodology for collection (30%) and lack of human resources to prepare and label voice data adequately (55%).
CONCLUSION
To conduct large-scale multi-institutional voice research with AI, there is a pertinent need for standardization of acoustic data management, as well as an infrastructure for secure and efficient data sharing.
LEVEL OF EVIDENCE
Level 5 Laryngoscope, 2023.
Current Practices in Voice Data Collection and Limitations to Voice AI Research: A National Survey.
Emily Evangelista
Rohan Kale
Desiree McCutcheon
Anais Rameau
Alexander H. Gelbard
Maria Powell
Michael Johns
Anthony Law
Phillip C Song
M. Naunheim
Stephanie Watts
Paul C. Bryson
Matthew G. Crowson
Jeremy M. Pinto
Yael Bensoussan
INTRODUCTION
Accuracy and validity of voice AI algorithms rely on substantial quality voice data. Although commensurable amounts of voice da… (voir plus)ta are captured daily in voice centers across North America, there is no standardized protocol for acoustic data management, which limits the usability of these datasets for voice artificial intelligence (AI) research.
OBJECTIVE
The aim was to capture current practices of voice data collection, storage, analysis, and perceived limitations to collaborative voice research.
METHODS
A 30-question online survey was developed with expert guidance from the voicecollab.ai members, an international collaborative of voice AI researchers. The survey was disseminated via REDCap to an estimated 200 practitioners at North American voice centers. Survey questions assessed respondents' current practices in terms of acoustic data collection, storage, and retrieval as well as limitations to collaborative voice research.
RESULTS
Seventy-two respondents completed the survey of which 81.7% were laryngologists and 18.3% were speech language pathologists (SLPs). Eighteen percent of respondents reported seeing 40%-60% and 55% reported seeing >60 patients with voice disorders weekly (conservative estimate of over 4000 patients/week). Only 28% of respondents reported utilizing standardized protocols for collection and storage of acoustic data. Although, 87% of respondents conduct voice research, only 38% of respondents report doing so on a multi-institutional level. Perceived limitations to conducting collaborative voice research include lack of standardized methodology for collection (30%) and lack of human resources to prepare and label voice data adequately (55%).
CONCLUSION
To conduct large-scale multi-institutional voice research with AI, there is a pertinent need for standardization of acoustic data management, as well as an infrastructure for secure and efficient data sharing.
LEVEL OF EVIDENCE
Level 5 Laryngoscope, 2023.
The deployment of machine learning systems in the market economy has triggered academic and institutional fears over potential tacit collusi… (voir plus)on between fully automated agents. Multiple recent economics studies have empirically shown the emergence of collusive strategies from agents guided by machine learning algorithms. In this work, we prove that multi-agent Q-learners playing the iterated prisoner's dilemma can learn to collude. The complexity of the cooperative multi-agent setting yields multiple fixed-point policies for
In this paper, we consider learning and control problem in an unknown Markov jump linear system (MJLS) with perfect state observations. We f… (voir plus)irst establish a generic upper bound on regret for any learning based algorithm. We then propose a certainty equivalence-based learning alagrithm and show that this algorithm achieves a regret of
2023-12-13
2023 62nd IEEE Conference on Decision and Control (CDC) (publié)
We introduce differentiable indirection – a novel learned primitive that employs differentiable multi-scale lookup tables as an effective … (voir plus)substitute for traditional compute and data operations across the graphics pipeline. We demonstrate its flexibility on a number of graphics tasks, i.e., geometric and image representation, texture mapping, shading, and radiance field representation. In all cases, differentiable indirection seamlessly integrates into existing architectures, trains rapidly, and yields both versatile and efficient results.
The characteristic ``in-plane"bending associated with soft robots' deformation make them preferred over rigid robots in sophisticated manipu… (voir plus)lation and movement tasks. Executing such motion strategies to precision in soft deformable robots and structures is however fraught with modeling and control challenges given their infinite degrees-of-freedom. Imposing \textit{piecewise constant strains} (PCS) across (discretized) Cosserat microsolids on the continuum material however, their dynamics become amenable to tractable mathematical analysis. While this PCS model handles the characteristic difficult-to-model ``in-plane"bending well, its Lagrangian properties are not exploited for control in literature neither is there a rigorous study on the dynamic performance of multisection deformable materials for ``in-plane"bending that guarantees steady-state convergence. In this sentiment, we first establish the PCS model's structural Lagrangian properties. Second, we exploit these for control on various strain goal states. Third, we benchmark our hypotheses against an Octopus-inspired robot arm under different constant tip loads. These induce non-constant ``in-plane"deformation and we regulate strain states throughout the continuum in these configurations. Our numerical results establish convergence to desired equilibrium throughout the continuum in all of our tests. Within the bounds here set, we conjecture that our methods can find wide adoption in the control of cable- and fluid-driven multisection soft robotic arms; and may be extensible to the (learning-based) control of deformable agents employed in simulated, mixed, or augmented reality.