Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Beyond Causal Discovery for Astronomy: Learning Meaningful Representations with Independent Component Analysis
Given two sets of elements (such as cell types and drug compounds), researchers typically only have access to a limited subset of their inte… (voir plus)ractions. The task of causal imputation involves using this subset to predict unobserved interactions. Squires et al. (2022) have proposed two estimators for this task based on the synthetic interventions (SI) estimator: SI-A (for actions) and SI-C (for contexts). We extend their work and introduce a novel causal imputation estimator, generalized synthetic interventions (GSI). We prove the identifiability of this estimator for data generated from a more complex latent factor model. On synthetic and real data we show empirically that it recovers or outperforms their estimators.
Unsupervised object discovery is commonly interpreted as the task of localizing and/or categorizing objects in visual data without the need … (voir plus)for labeled examples. While current object recognition methods have proven highly effective for practical applications, the ongoing demand for annotated data in real-world scenarios drives research into unsupervised approaches. Furthermore, existing literature in object discovery is both extensive and diverse, posing a significant challenge for researchers that aim to navigate and synthesize this knowledge. Motivated by the evidenced interest in this avenue of research, and the lack of comprehensive studies that could facilitate a holistic understanding of unsupervised object discovery, this survey conducts an in-depth exploration of the existing approaches and systematically categorizes this compendium based on the tasks addressed and the families of techniques employed. Additionally, we present an overview of common datasets and metrics, highlighting the challenges of comparing methods due to varying evaluation protocols. This work intends to provide practitioners with an insightful perspective on the domain, with the hope of inspiring new ideas and fostering a deeper understanding of object discovery approaches.
In recent years, there has been a trend in the field of Reinforcement Learning (RL) towards large action models trained offline on large-sca… (voir plus)le datasets via sequence modeling. Existing models are primarily based on the Transformer architecture, which result in powerful agents. However, due to slow inference times, Transformer-based approaches are impractical for real-time applications, such as robotics. Recently, modern recurrent architectures, such as xLSTM and Mamba, have been proposed that exhibit parallelization benefits during training similar to the Transformer architecture while offering fast inference. In this work, we study the aptitude of these modern recurrent architectures for large action models. Consequently, we propose a Large Recurrent Action Model (LRAM) with an xLSTM at its core that comes with linear-time inference complexity and natural sequence length extrapolation abilities. Experiments on 432 tasks from 6 domains show that LRAM compares favorably to Transformers in terms of performance and speed.
In this work, we present a new unsupervised anomaly (outlier) detection (AD) method using the sliced-Wasserstein metric. This filtering tech… (voir plus)nique is conceptually interesting for MLOps pipelines deploying machine learning models in critical sectors, e.g., energy, as it offers a conservative data selection. Additionally, we open the first dataset showcasing localized critical peak rebate demand response in a northern climate. We demonstrate the capabilities of our method on synthetic datasets as well as standard AD datasets and use it in the making of a first benchmark for our open-source localized critical peak rebate dataset.