Portrait de Jianan Zhao n'est pas disponible

Jianan Zhao

Doctorat - Université de Montréal
Superviseur⋅e principal⋅e


GraphText: Graph Reasoning in Text Space
Jianan Zhao
Le Zhuo
Yikang Shen
Meng Qu
Kai Liu
Michael Bronstein
Zhaocheng Zhu
Large Language Models (LLMs) have gained the ability to assimilate human knowledge and facilitate natural language interactions with both hu… (voir plus)mans and other LLMs. However, despite their impressive achievements, LLMs have not made significant advancements in the realm of graph machine learning. This limitation arises because graphs encapsulate distinct relational data, making it challenging to transform them into natural language that LLMs understand. In this paper, we bridge this gap with a novel framework, GraphText, that translates graphs into natural language. GraphText derives a graph-syntax tree for each graph that encapsulates both the node attributes and inter-node relationships. Traversal of the tree yields a graph text sequence, which is then processed by an LLM to treat graph tasks as text generation tasks. Notably, GraphText offers multiple advantages. It introduces training-free graph reasoning: even without training on graph data, GraphText with ChatGPT can achieve on par with, or even surpassing, the performance of supervised-trained graph neural networks through in-context learning (ICL). Furthermore, GraphText paves the way for interactive graph reasoning, allowing both humans and LLMs to communicate with the model seamlessly using natural language. These capabilities underscore the vast, yet-to-be-explored potential of LLMs in the domain of graph machine learning.
Learning on Large-scale Text-attributed Graphs via Variational Inference
Jianan Zhao
Meng Qu
Chaozhuo Li
Hao Yan
Qian Liu
Rui Li
Xing Xie
This paper studies learning on text-attributed graphs (TAGs), where each node is associated with a text description. An ideal solution for s… (voir plus)uch a problem would be integrating both the text and graph structure information with large language models and graph neural networks (GNNs). However, the problem becomes very challenging when graphs are large due to the high computational complexity brought by training large language models and GNNs together. In this paper, we propose an efficient and effective solution to learning on large text-attributed graphs by fusing graph structure and language learning with a variational Expectation-Maximization (EM) framework, called GLEM. Instead of simultaneously training large language models and GNNs on big graphs, GLEM proposes to alternatively update the two modules in the E-step and M-step. Such a procedure allows training the two modules separately while simultaneously allowing the two modules to interact and mutually enhance each other. Extensive experiments on multiple data sets demonstrate the efficiency and effectiveness of the proposed approach.